XinYing Chew | Computer Science | Young Scientist Award

Assoc. Prof. Dr. XinYing Chew | Computer Science | Young Scientist Award

Associate Professor at Universiti Sains Malaysia (USM), Malaysia

Associate Professor Ts. Dr. Chew XinYing is a distinguished academic and researcher at Universiti Sains Malaysia (USM), where she serves in the School of Computer Sciences. With extensive expertise in industrial computing and advanced analytics, she has made significant contributions to data-driven research, quality control, and artificial intelligence applications. As a Program Manager for both Computer Science and Offshore Programs at USM, she plays a vital role in shaping academic curricula and fostering industry collaborations. Her work spans interdisciplinary domains, including AI in tourism, environmental sustainability, and predictive analytics, making her a key figure in modern computational research. Dr. Chew has co-authored numerous high-impact journal publications and actively collaborates with international scholars, reflecting her commitment to advancing knowledge globally. With her leadership, research acumen, and dedication to academic excellence, she continues to drive innovation in data analytics and computational intelligence, contributing to both academia and industry applications.

Professional Profile

Education

Dr. Chew XinYing holds a Ph.D. in Computer Science from Universiti Sains Malaysia (USM), where she specialized in industrial computing and advanced statistical methodologies. Prior to her doctoral studies, she earned her Bachelor of Information Technology (Hons.) from Universiti Kebangsaan Malaysia (UKM), laying the foundation for her expertise in data analytics and computational intelligence. Throughout her academic journey, she has demonstrated a deep passion for integrating statistical process control techniques with modern computing approaches, making her a key researcher in quality control and decision-making systems. Her educational background has equipped her with advanced knowledge in artificial intelligence, predictive modeling, and big data analytics. This strong academic foundation has not only fueled her research contributions but also positioned her as a mentor and educator, guiding students in cutting-edge technological advancements. Dr. Chew’s commitment to continuous learning has made her a well-rounded scholar in the field of computational sciences.

Professional Experience

Dr. Chew XinYing is currently an Associate Professor at the School of Computer Sciences, Universiti Sains Malaysia (USM), where she also serves as the Program Manager for both Computer Science and Offshore Programs. Her professional career spans years of academic excellence, with a focus on curriculum development, student mentorship, and research leadership. She has played a pivotal role in shaping USM’s computer science programs, ensuring they align with industry standards and emerging technological trends. Beyond academia, she has engaged in industry collaborations, applying her expertise in industrial computing and analytics to solve real-world challenges. Her research extends into diverse fields such as artificial intelligence in business intelligence, statistical process control, and environmental sustainability. Dr. Chew’s extensive experience in both research and academic leadership has positioned her as a key contributor to Malaysia’s technological and educational advancements, fostering a new generation of computational scientists and researchers.

Research Interests

Dr. Chew XinYing’s research interests lie at the intersection of industrial computing, artificial intelligence, quality control, and advanced analytics. She has conducted extensive studies on statistical process control (SPC) and predictive modeling, focusing on their applications in business intelligence and decision-making. Additionally, her work explores artificial intelligence in tourism, environmental sustainability, and customer behavior analytics, reflecting her ability to integrate computing technologies into diverse domains. She is particularly interested in machine learning algorithms, big data analytics, and AI-driven decision support systems, which have wide-ranging applications in healthcare, financial analytics, and industrial optimization. Her interdisciplinary approach has led to impactful research in areas such as green technology, metaverse ethics, and orthopedic disease detection using AI. By bridging computational science with real-world applications, Dr. Chew continues to push the boundaries of data-driven innovation and contribute to advancements in both academic and industrial sectors.

Awards and Honors

Dr. Chew XinYing has been recognized for her outstanding contributions to research and academia through various awards and honors. Her scholarly achievements are reflected in her numerous high-impact journal publications, earning her recognition as a leading researcher in industrial computing and AI-driven analytics. She has received international accolades for her work in predictive modeling, AI in tourism, and quality control methodologies, demonstrating the real-world impact of her research. As a highly cited researcher, her studies have influenced multiple fields, positioning her among the top contributors in data-driven decision-making research. In addition to academic awards, she has been invited as a keynote speaker and panelist at international conferences, highlighting her expertise in machine learning and computational intelligence. Her dedication to academic excellence, combined with her leadership in research and education, continues to earn her prestigious honors, further establishing her as a respected figure in computer science and analytics.

Conclusion

Associate Professor Ts. Dr. Chew XinYing is a strong candidate for the Research for Young Scientist Award due to her high research productivity, interdisciplinary expertise, and leadership roles. To further solidify her eligibility, she could focus on independent research contributions, securing significant research grants, and emphasizing industry impact through patents and collaborations.

Publications Top Noted

1. Blockchain and Innovation Resistance

  • Title: Navigating the Power of Blockchain Strategy: Analysis of Technology-Organization-Environment (TOE) Framework and Innovation Resistance Theory Using PLS-SEM and ANN Insights
  • Authors: Alnoor, A.M., Abbas, S., Sadaa, A.M., Chew, X., Erkol Bayram, G.E.
  • Year: 2025
  • Journal: Technological Forecasting and Social Change
  • Citations: 0

2. Statistical Process Control and Quality Engineering

  • Title: Optimal Designs of the Group Runs Exponentially Weighted Moving Average X and t Schemes

  • Authors: Khaw, K.W., Chew, X., Teh, S.

  • Year: 2025

  • Journal: Quality and Reliability Engineering International

  • Citations: 0

  • Title: The One-Sided Variable Sampling Interval Exponentially Weighted Moving Average X? Charts Under the Gamma Distribution

  • Authors: Goh, K.L., Chew, X.

  • Year: 2024

  • Journal: Sains Malaysiana

  • Citations: 0

3. Organizational Communication and IT

  • Title: How Information Technology Influences Organizational Communication: The Mediating Role of Organizational Structure
  • Authors: Chew, X., Alharbi, R.K., Khaw, K.W., Alnoor, A.M.
  • Year: 2024
  • Journal: PSU Research Review
  • Citations: 2

4. Consumer Behavior and Decision-Making

  • Title: Unveiling the Optimal Configuration of Impulsive Buying Behavior Using Fuzzy Set Qualitative Comparative Analysis and Multi-Criteria Decision Approach
  • Authors: Alnoor, A.M., Abbas, S., Khaw, K.W., Raad Muhsen, Y.R., Chew, X.
  • Year: 2024
  • Journal: Journal of Retailing and Consumer Services
  • Citations: 6

5. E-Commerce and Customer Trust

  • Title: Symmetric and Asymmetric Modeling to Boost Customers’ Trustworthiness in Livestreaming Commerce
  • Authors: Chew, X., Alnoor, A.M., Khaw, K.W., Al Halbusi, H., Raad Muhsen, Y.R.
  • Year: 2024
  • Journal: Current Psychology
  • Citations: 2

6. Artificial Intelligence and Tourism

  • Title: The Role of Artificial Intelligence in Regenerative Tourism and Green Destinations
  • Authors: Alnoor, A.M., Erkol Bayram, G.E., Chew, X., Shah, S.H.A.
  • Year: 2024
  • Publication Type: Book
  • Citations: 0

 

Miin-Shen Yang | Computer Science | Best Researcher Award

Prof Dr. Miin-Shen Yang | Computer Science | Best Researcher Award

Distinguished Professor,Chung Yuan Christian University, Taiwan

👨‍🏫 Miin-Shen Yang is a distinguished scholar and professor specializing in applied mathematics and artificial intelligence. He has made significant contributions to fuzzy clustering, machine learning, and soft computing. Currently serving as a Life Distinguished Professor at Chung Yuan Christian University (CYCU), Taiwan, Dr. Yang is highly regarded in the scientific community for his innovative research. He is also recognized among the top 0.5% of scholars globally by ScholarGPS and Stanford University’s Top 2% Scientists.

Publication Profile

ORCID

Strengths for the Award:

  1. Extensive Academic Background: Miin-Shen Yang has earned degrees in mathematics and statistics from prestigious institutions, with a Ph.D. from the University of South Carolina, USA. His long-standing association with Chung Yuan Christian University (CYCU), Taiwan, adds to his academic credibility.
  2. Research Impact: His research areas—statistics, clustering algorithms, fuzzy clustering, soft computing, pattern recognition, and machine learning—are crucial in modern scientific and technological advancements, especially in the AI-driven era.
  3. Global Recognition: Miin-Shen Yang’s inclusion in Stanford University’s Top 2% Scientists and ScholarGPS’s global top 0.5% demonstrates the international recognition of his work and significant contributions to artificial intelligence, image processing, and related fields.
  4. Editorial Roles: He served as an Associate Editor for IEEE Transactions on Fuzzy Systems and remains on the Editorial Board of Electronics (MDPI). These roles show his influence in shaping scientific discourse in his fields of expertise.
  5. Leadership in Academia: As a Distinguished Professor and previous Chairperson and Dean of the College of Science at CYCU, he has demonstrated not only research expertise but also leadership in academic governance.

Areas for Improvement:

  1. Broader Collaborations: While Miin-Shen Yang’s contributions are notable in the fields of applied mathematics and artificial intelligence, there could be a stronger emphasis on collaborative projects across interdisciplinary fields such as biostatistics or environmental data science, which are becoming increasingly critical for global research challenges.
  2. Applied Research and Industry Connections: Strengthening connections between his academic research and real-world industrial applications could further enhance the societal impact of his work, especially in sectors like healthcare, energy, or environmental sustainability where AI and machine learning are emerging as transformative tools.
  3. Public Engagement and Outreach: Additional efforts to disseminate his research through public engagement activities, workshops, or conferences that target both academic and non-academic audiences could raise the visibility and practical applicability of his findings.

Education

🎓 Miin-Shen Yang holds a B.S. in Mathematics from Chung Yuan Christian University (1977), an M.S. in Applied Mathematics from National Chiao-Tung University (1980), and a Ph.D. in Statistics from the University of South Carolina, Columbia, USA (1989).

Experience

💼 Dr. Yang joined CYCU in 1989 and became a Professor in 1994. He has held several key positions, including Department Chair, Director of the Chaplain’s Office, and Dean of the College of Science. He also served as a Visiting Professor at the University of Washington from 1997 to 1998.

Research Focus

🔬 Dr. Yang’s research interests span applications of statistics, fuzzy clustering, machine learning, soft computing, pattern recognition, and artificial intelligence. His contributions have significantly advanced clustering algorithms and AI-related technologies.

Awards and Honors

🏅 Dr. Yang has been recognized among Stanford University’s Top 2% Scientists and listed among ScholarGPS global top 0.5% scholars. He has also served as an Associate Editor for IEEE Transactions on Fuzzy Systems and is currently an Editorial Board Member for the journal Electronics.

Publications (Top Notes)

📚 Dr. Yang has published extensively on fuzzy clustering and artificial intelligence in leading journals. His works have been widely cited, marking his influence in the field.

“Fuzzy Clustering Algorithms and Applications” – Published in 2015 in Pattern Recognition Letters. Cited by 100+ articles

Conclusion:

Miin-Shen Yang is an exceptional candidate for the Research for Best Research Award, with a strong and diversified research portfolio in applied mathematics, artificial intelligence, and machine learning. His global recognition, academic leadership, and editorial contributions demonstrate his significant impact on the scientific community. While further strengthening his research collaborations across broader disciplines and emphasizing real-world applications could enhance his overall impact, his current achievements make him a highly competitive and deserving nominee for the award.

Changqing Xia | Computer Science | Best Researcher Award

Prof. Changqing Xia | Computer Science | Best Researcher Award

Researcher, Shen Zi Institute, Chinese Academy of Sciences, China

Dr. Changqing Xia is a leading researcher in the fields of cyber–physical systems, artificial intelligence (AI), and network computation. He has focused his career on advancing the integration of computing, communication, and control in smart manufacturing systems. Dr. Xia’s expertise lies in developing AI-driven solutions that optimize resource allocation, network scheduling, and real-time data management in industrial environments. With numerous publications in prestigious journals, Dr. Xia is at the forefront of intelligent system design and advanced production technologies.

Profile

Orcid

Strengths for the Award

Dr. Changqing Xia demonstrates outstanding contributions to the fields of cyber–physical systems (CPS), artificial intelligence, and network scheduling, particularly with a focus on industrial applications. His recent works such as Deterministic Network–Computation–Manufacturing Interaction Mechanism for AI-Driven Cyber–Physical Production Systems and Co-Design of Control, Computation, and Network Scheduling Based on Reinforcement Learning illustrate his innovative approach to merging computation with physical manufacturing environments. His expertise in using AI, reinforcement learning, and computational intelligence to improve production systems and real-time scheduling significantly advances the field. Moreover, his research on 5G-based positioning and data scheduling under mixed-criticality scenarios provides solutions to current industrial challenges, making him a forward-looking researcher whose work is at the cutting edge of smart manufacturing and industrial automation. His ability to integrate multiple domains such as control, communication, and computing positions him as a highly versatile and impactful researcher.

Areas for Improvement

While Dr. Xia’s research portfolio is robust, focusing on a broader application of his methodologies across different industries, outside of cyber-physical production systems, could further expand the impact of his work. His publications heavily concentrate on industrial environments, but applying his AI-driven methods to fields like healthcare, smart cities, or autonomous systems could diversify his research impact. Additionally, greater collaboration with other interdisciplinary fields could bring fresh perspectives and opportunities for expanding his work into more novel, groundbreaking areas. Another area of improvement could be increasing public engagement or educational outreach, which would help communicate his research more broadly to a non-specialist audience.

Publications Top Notes:

  1. Deterministic Network–Computation–Manufacturing Interaction Mechanism for AI-Driven Cyber–Physical Production Systems
    IEEE Internet of Things Journal (2024-05-15)
    DOI: 10.1109/JIOT.2024.3367350
  2. Co-Design of Control, Computation, and Network Scheduling Based on Reinforcement Learning
    IEEE Internet of Things Journal (2024-02-01)
    DOI: 10.1109/JIOT.2023.3305708
  3. A Self-Triggered Approach for Co-Design of MPC and Computing Resource Allocation
    IEEE Internet of Things Journal (2024)
    DOI: 10.1109/JIOT.2024.3392563
  4. Computational-Intelligence-Based Scheduling with Edge Computing in Cyber–Physical Production Systems
    Entropy (2023-12)
    DOI: 10.3390/e25121640
  5. Control–Communication–Computing Co-Design in Cyber–Physical Production System
    IEEE Internet of Things Journal (2023-03-15)
    DOI: 10.1109/JIOT.2022.3221932
  6. Indoor Fingerprint Positioning Method Based on Real 5G Signals
    Conference Paper (2023-01-05)
    DOI: 10.1145/3583788.3583819
  7. Mixed-Criticality Industrial Data Scheduling on 5G NR
    IEEE Internet of Things Journal (2022-06-15)
    DOI: 10.1109/JIOT.2021.3121251
  8. Real-Time Scheduling of Massive Data in Time Sensitive Networks With a Limited Number of Schedule Entries
    IEEE Access (2020)
    DOI: 10.1109/ACCESS.2020.2964690

Conclusion

Dr. Changqing Xia is a strong candidate for the “Best Researcher Award” due to his significant contributions to the fields of AI, network computation, and industrial CPS. His research innovations in optimizing industrial systems through cutting-edge computational and network scheduling methods provide solutions to contemporary challenges in smart manufacturing and data-intensive environments. With minor refinements in expanding his interdisciplinary reach and public engagement, Dr. Xia’s already impactful work could lead to even broader recognition in both the academic and industrial spheres. His achievements reflect not only technical depth but also practical applicability, making him highly deserving of this prestigious award.