Jeremie Zaffran | Chemistry | Best Researcher Award

Prof. Dr. Jeremie Zaffran | Chemistry | Best Researcher Award

Researcher at CNRS, France

Dr. Jeremie Zaffran is a distinguished computational chemist specializing in heterogeneous catalysis and machine learning. He is a Tenured Research Fellow at the French National Center for Scientific Research (CNRS), based at the E2P2L (Eco Efficient Products and Processes Lab) in Shanghai, China. With a strong background in computational techniques, Zaffran’s work focuses on using ab initio calculations and microkinetics simulations to address challenges in renewable energy, including CO2 storage, biomass transformation, and solar water splitting. His interdisciplinary approach combines advanced computational methods with close collaboration with experimentalists. Zaffran’s career includes high-profile roles at institutions like ShanghaiTech University, the Technion–Israel Institute of Technology, and Ecole Normale Superieure de Lyon. Known for his leadership and project management skills, he has supervised multiple PhD students and worked on several large-scale research projects. He is also deeply involved in mentoring, contributing to the development of future scientific leaders.

Professional Profile

Education

Dr. Jeremie Zaffran completed his PhD in Chemistry at Ecole Normale Superieure de Lyon, France, in 2014, where he graduated with the highest distinction. His dissertation focused on computational methods for biomass transformation, specifically in designing solid catalysts using Density Functional Theory (DFT). He also holds a Master’s degree in Materials Science from Université Paris Diderot-Paris 7, where he graduated summa cum laude in 2010, ranking first in his class. Zaffran’s academic foundation was further enriched with a Bachelor’s degree in Chemistry from the same institution, where he was ranked fifth in his cohort. During his doctoral research, he worked under the guidance of Prof. Philippe Sautet and collaborated with experimental teams from IRCELYON and NOVANCE, bridging theory and application in catalysis. His academic journey laid the groundwork for his successful career in computational chemistry and materials science, with a focus on catalysis and energy-related research.

Professional Experience

Dr. Zaffran’s professional experience spans over a decade of groundbreaking work in computational catalysis. From 2011 to 2017, he worked at leading institutions such as the Technion-Israel Institute of Technology and ShanghaiTech University, where he held roles as a Postdoctoral Fellow and Research Assistant Professor. At ShanghaiTech, Zaffran led efforts to design efficient electrocatalysts using DFT and machine learning. Since 2020, he has served as a Research Fellow at CNRS, where he leads research in the E2P2L lab in Shanghai, China. His work focuses on developing sustainable technologies in catalysis for renewable energy applications, including CO2 valorization and biomass conversion. He has also contributed significantly to large interdisciplinary projects, leading computational teams for projects like “Smart Digital Catalysis.” Throughout his career, Zaffran has demonstrated expertise in collaborating across disciplines and industries, coordinating research efforts that bridge computational chemistry and experimental science.

Research Interests

Dr. Zaffran’s primary research interests lie in computational heterogeneous catalysis, with a particular focus on applying machine learning and advanced computational techniques such as ab initio calculations, microkinetics simulations, and Density Functional Theory (DFT) to solve real-world problems. His research aims to design and optimize catalysts for renewable energy applications, including biomass transformation, CO2 storage and valorization, and solar water splitting. Zaffran is also actively involved in integrating machine learning models into catalysis design, enhancing the efficiency and speed of identifying viable catalysts. His work on microkinetic simulations, especially using tools like CatMAP, has provided valuable insights into catalytic reaction mechanisms. Zaffran’s interdisciplinary approach combines computational chemistry with experimental collaborations, making his research highly relevant to sustainable energy and environmental challenges. He is particularly interested in advancing green chemistry solutions by developing catalysts that can facilitate cleaner industrial processes and renewable energy production.

Awards and Honors

Dr. Zaffran has received numerous prestigious awards and honors throughout his career. He was awarded the Lady Davis Fellowship from the Technion–Israel Institute of Technology in 2016 and the Grand Technion Energy Program (GTEP) Fellowship for Outstanding Post-Doctoral Fellows the same year. His research excellence was also recognized by the Israel Ministry of Aliyah and Immigrant Absorption Fellowship in 2015. During his academic journey, Zaffran earned the highest distinction for his PhD, summa cum laude for his Master’s degree, and cum laude for his Bachelor’s degree. His research contributions have been supported by significant grants, including those from CNRS and the National Natural Science Foundation of China (NSFC), allowing him to lead high-impact projects in the field of computational catalysis. Zaffran’s continued success in securing funding for innovative research reflects his standing as a leader in his field and his ability to attract international recognition.

Conclusion

Jeremie Zaffran is highly qualified for the Best Researcher Award. His technical expertise in computational chemistry, successful collaborations in sustainable energy research, and strong track record in leadership and mentorship make him a deserving candidate. While there are areas like expanding research diversity and increasing visibility through publications, his accomplishments to date place him among the leaders in his field.

Publications Top Noted

  • Stoichiometric Selective Carbonylation of Methane to Acetic Acid by Chemical Looping
    Authors: Y. Wang, C. Dong, M.V. Shamzhy, A.Y. Khodakov, V.V. Ordomsky
    Journal: ACS Catalysis
    Year: 2025
    Citations: 0

  • Unveiling the Phenol Direct Carboxylation Reaction Mechanism at ZrO2 Surface
    Authors: K. Zhang, C. Ma, S. Paul, J. Zaffran
    Journal: Molecular Catalysis
    Year: 2024
    Citations: 2

 

YI-CHENLEE | Chemistry | Best Researcher Award

Assoc. Prof. Dr. YI-CHENLEE | Chemistry | Best Researcher Award

Associate Professor, Department of Seafoo d Science, National Kaohsiung University of Scienc e an d Technology, Kaohsiung,Taiwan

Associate Profes李憶甄 (Lee, Yi Chen) is an Associate Professor at the Department of Aquatic Food Science, National Kaohsiung University of Science and Technology (NKUST), Taiwan. She also serves as the Vice Director of Research and Development at NKUST’s Water Circle College. With a focus on food science, especially in food safety, preservation, and sensory analysis, Dr. Lee has a strong academic and industry background. She completed her Ph.D. in Food Science from National Pingtung University of Science and Technology, after earning her master’s and bachelor’s degrees from National Kaohsiung University of Science and Technology. Her research interests include the development of innovative food technologies to enhance food quality, safety, and shelf life. Throughout her career, she has collaborated with various researchers and institutions, contributing to numerous high-impact publications in food science and technology.sor,Department of Seafoo d Science, National Kaohsiung University of Scienc e an d Technology, Kaohsiung,Taiwan

Profile 

Scopus

Education 

Dr. Lee earned her Ph.D. in Food Science from National Pingtung University of Science and Technology, Taiwan, between 2010 to 2015. Prior to that, she completed her M.S. in Aquatic Food Science from National Kaohsiung University of Science and Technology (2008-2010), and her B.S. in Aquatic Food Science from the same institution (2004-2008). Her academic journey in food science, with a focus on aquatic food products, laid the foundation for her expertise in food safety, preservation, and sensory analysis. The combination of a strong theoretical education and hands-on research in these areas has driven her career forward as a professor and researcher in food technology. Her commitment to academic excellence has also been evident in her role in mentoring students and guiding emerging scholars in her field.

Experience 

Dr. Lee has a diverse career blending academia and industry. She is currently an Associate Professor at National Kaohsiung University of Science and Technology, where she also serves as Vice Director of Research and Development at the Water Circle College since 2016. Before her tenure at NKUST, Dr. Lee worked in various industry roles, including Deputy Manager in Quality Management at Everlight Biotech, Research and Development Manager at Zhen Yi Food Co., and Lecturer at multiple universities, including Chang Jung Christian University and National Taitung University. Her industry experience has enriched her academic research, especially in food processing, quality control, and product innovation. Additionally, her prior role as a Lecturer and Assistant at National Kaohsiung University of Science and Technology (2010–2016) provided her with substantial teaching and research management experience, shaping her academic leadership.

Research Focus 

Dr. Lee’s research primarily revolves around food safety, preservation technologies, and sensory analysis. She is particularly focused on the application of high-pressure processing (HPP) and microwave-assisted induction heating (MAIH) technologies to extend the shelf life of food products while maintaining nutritional and sensory quality. Her work aims to improve food safety by developing innovative methods to control microbial growth in perishable products like seafood, ready-to-eat meals, and beverages. Additionally, she investigates food inspection and analysis techniques to enhance quality assurance in food production. Her research also includes the application of novel processing methods to reduce food waste and improve the sustainability of food production systems. Dr. Lee’s interdisciplinary approach has led to impactful findings in food preservation, contributing to both academic literature and real-world industry practices.

Publications

  1. Application of high-hydrostatic pressure to extend shelf life of miso-marinated escolar loins during cold storage 🐟📦
  2. Developing novel microwave-assisted induction heating (MAIH) technology for heating in-packaged ready-to-eat chicken breast products 🍗💡
  3. Application of novel microwave-assisted induction heating technology for extending the shelf life of ready-to-eat rice through microbial, physical, and chemical quality preservation 🍚🌡️
  4. Comparison of high-hydrostatic pressure and frozen treatments on raw freshwater clam marinated in soy sauce: Impact on microbiological and organoleptic qualities 🦪❄️
  5. Inactivation Kinetics of Foodborne Pathogens in Carrot Juice by High-Pressure Processing 🥕🔬
  6. Determining the Optimal Vacuum Frying Conditions for Silver Herring (Spratelloides gracilis) Using the Response Surface Methodology 🐟🍟
  7. Physicochemical Quality Retention during Cold Storage of Prepackaged Barramundi Meat Processed with a New Microwave-Assisted Induction Heating Technology 🐠❄️
  8. Effect of High-Pressure Processing on the Qualities of Carrot Juice during Cold Storage 🥕💧
  9. Green extraction and purification of chondroitin sulfate from jumbo squid cartilage by a novel procedure combined with enzyme, ultrasound, and hollow fiber dialysis 🦑🧬
  10. Design and Implementation of a Recommendation System for Buying Fresh Foods Online Based on Web Crawling 🍏🛒