Hamed Khodadadi | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Hamed Khodadadi | Artificial Intelligence | Best Researcher Award

Faculty Member at Khomeinishahr Branch, Islamic Azad University, Iran

Dr. Hamed Khodadadi is an accomplished researcher and academic with extensive expertise in biomedical engineering, control systems, and machine learning, particularly in healthcare applications. His work focuses on developing advanced computer-aided diagnosis systems for detecting diseases such as cancer, brain disorders, cardiovascular conditions, ADHD, Parkinson’s, and Schizophrenia. He has also contributed significantly to biomedical control systems, medical drug dosing strategies, and applications of chaos theory in medical research. With a strong background in intelligent modeling, nonlinear and adaptive control, and optimization techniques, Dr. Khodadadi has published widely and earned multiple prestigious awards recognizing his impact. His research has not only advanced scientific understanding but also demonstrated practical value through patents and innovative devices. Alongside research, he has mentored numerous graduate and doctoral students, demonstrating dedication to academic growth and leadership. His combination of innovation, productivity, and mentorship positions him as a highly influential figure in biomedical engineering and applied machine learning.

Professional Profile 

Google Scholar | Scopus Profile | ORCID Profile 

Education

Dr. Hamed Khodadadi holds a Ph.D. in Electrical Engineering with a specialization in Control Systems from Azad University, Science and Research Branch, Tehran. His doctoral research focused on extracting nonlinear indices for image patterns and evaluating their application in cancer tumor control, bridging the gap between control theory and biomedical diagnosis. He earned his M.Sc. in Electrical Engineering, also in Control Systems, where his thesis involved designing and constructing a two-degree-of-freedom inertial stabilized platform, showcasing his strong foundation in system modeling and control. His academic journey began with a B.Sc. in Electrical Engineering at Iran University of Science and Technology, where he worked on PID controller design for pan-tilt movement in a gimbal system. This educational progression demonstrates a consistent focus on control systems with increasing application toward biomedical challenges, reflecting his ability to integrate engineering principles into healthcare innovations. His education has provided the solid technical base underpinning his interdisciplinary research career.

Experience

Dr. Khodadadi has over a decade of academic and research experience, serving as Assistant Professor and later Associate Professor at Azad University, Khomeinishahr Branch, where he supervises M.Sc. and Ph.D. students. His work includes designing advanced computer-aided diagnosis systems using biomedical signals and images for applications in cancer, cardiovascular disorders, ADHD, Parkinson’s, and Schizophrenia. He has also applied advanced control methods such as nonlinear, adaptive, fuzzy, and model predictive control to medical drug dosing, robotics, and industrial systems. His experience extends to the construction of biomedical and engineering devices, including prosthetic hands and robotic platforms. In addition to teaching graduate and undergraduate courses, he has actively guided thesis projects, contributing to the growth of young researchers. He has also undertaken collaborative roles in collecting biomedical databases, such as cardiovascular biomarkers and EEG signals, supporting clinical research. His broad experience demonstrates both depth in biomedical applications and versatility across engineering and industrial domains.

Research Focus

Dr. Khodadadi’s research centers on biomedical engineering, control systems, and machine learning, with a strong emphasis on healthcare applications. His work integrates computational intelligence, signal and image processing, and control theory to design advanced computer-aided diagnosis systems for life-threatening diseases, including various forms of cancer, brain disorders, and cardiovascular conditions. He has pioneered the application of nonlinear control, adaptive control, and metaheuristic optimization in medical drug dosing and disease modeling, contributing to precision medicine. Additionally, his research explores chaos theory and its role in biomedical image analysis, providing novel tools for early disease detection. He also investigates intelligent optimization and robust control techniques for diverse engineering applications, from robotics and power systems to industrial processes. His interdisciplinary focus blends theory with practical innovation, producing outcomes that advance both medical research and engineering systems. Ultimately, his research vision aims to improve diagnostic accuracy, treatment strategies, and patient outcomes through advanced engineering methods.

Award and Honor

Dr. Khodadadi has been recognized through numerous awards and honors that highlight his excellence in research, innovation, and mentorship. He has received multiple Best Researcher Awards at Azad University, including recognition at both departmental and institutional levels. His international visibility is reflected in honors such as Best Oral Presentation at the International Conference of Research in Europe and being a finalist for the Best Student Award at an IEEE international conference. He has also received recognition for supervising graduate theses with strong industrial impact, reflecting the practical value of his mentorship. His academic achievements include top rankings in national and Ph.D. entrance examinations, along with an Exceptional Talents Award early in his career. Furthermore, he earned the Best International Book Award at a university research festival, showcasing his contributions to scientific literature. Collectively, these accolades underscore his sustained contributions to advancing biomedical engineering, control systems, and healthcare-focused machine learning research.

Publication Top Notes

  • Title: Adaptive super-twisting non-singular terminal sliding mode control for tracking of quadrotor with bounded disturbances
    Authors: H. Ghadiri, M. Emami, H. Khodadadi
    Year: 2021
    Citations: 95

  • Title: Self-tuning PID controller design using fuzzy logic for half car active suspension system
    Authors: H. Khodadadi, H. Ghadiri
    Year: 2018
    Citations: 90

  • Title: Heart arrhythmia diagnosis based on the combination of morphological, frequency and nonlinear features of ECG signals and metaheuristic feature selection algorithm
    Authors: V. Mazaheri, H. Khodadadi
    Year: 2020
    Citations: 83

  • Title: Robust control and modeling a 2-DOF inertial stabilized platform
    Authors: H. Khodadadi, M.R.J. Motlagh, M. Gorji
    Year: 2011
    Citations: 78

  • Title: The Diagnosis of Attention Deficit Hyperactivity Disorder Using Nonlinear Analysis of the EEG Signal
    Authors: Y. Kiani, A.A. Rastegari, H. Khodadadi
    Year: 2019
    Citations: 72

  • Title: Human brain tumor diagnosis using the combination of the complexity measures and texture features through magnetic resonance image
    Authors: S. Salem Ghahfarrokhi, H. Khodadadi
    Year: 2020
    Citations: 54

  • Title: The effects of poplar bark and wood content on the mechanical properties of wood-polypropylene composites
    Authors: V. Safdari, H. Khodadadi, S.K. Hosseinihashemi, E. Ganjian
    Year: 2011
    Citations: 53

  • Title: Fuzzy logic self-tuning PID control for a single-link flexible joint robot manipulator in the presence of uncertainty
    Authors: A. Dehghani, H. Khodadadi
    Year: 2015
    Citations: 41

  • Title: Designing a Neuro-Fuzzy PID Controller Based on Smith Predictor for Heating System
    Authors: A. Dehghani, H. Khodadadi
    Year: 2017
    Citations: 35

  • Title: Malignant melanoma diagnosis applying a machine learning method based on the combination of nonlinear and texture features
    Authors: S. Salem Ghahfarrokhi, H. Khodadadi, H. Ghadiri, F. Fattahi
    Year: 2023
    Citations: 33

  • Title: Climate control of an agricultural greenhouse by using fuzzy logic self-tuning PID approach
    Authors: M. Heidari, H. Khodadadi
    Year: 2017
    Citations: 28

  • Title: Fuzzy Logic Self-tuning PID Controller Design Based on Smith Predictor for Heating System
    Authors: H. Khodadadi, A. Dehghani
    Year: 2016
    Citations: 25

  • Title: Fuzzy Logic Self-Tuning PID Controller Design for Ball Mill Grinding Circuits Using an Improved Disturbance Observer
    Authors: H. Khodadadi, H. Ghadiri
    Year: 2019
    Citations: 24

  • Title: Speed control of a DC motor using a fractional order sliding mode controller
    Authors: S. Heidarpoor, M. Tabatabaei, H. Khodadadi
    Year: 2017
    Citations: 23

  • Title: Emerging Technologies in Medicine: Artificial Intelligence, Robotics, and Medical Automation
    Authors: M. Rezaei, S. Saei, S.J. Khouzani, M.E. Rostami, M. Rahmannia, …
    Year: 2023
    Citations: 21

Conclusion

Dr. Hamed Khodadadi’s research contributions reflect a strong blend of theoretical innovation and practical application across biomedical engineering, control systems, and machine learning. His highly cited works demonstrate significant impact in fields such as disease diagnosis, biomedical signal and image processing, and intelligent control methods. The breadth of his publications, spanning healthcare applications, robotics, and industrial systems, highlights both versatility and depth. With consistent recognition through citations, patents, and international awards, his research not only advances academic knowledge but also addresses real-world medical and engineering challenges. Collectively, his achievements establish him as a leading researcher whose contributions are both impactful and enduring, making him a deserving candidate for prestigious recognition such as the Best Researcher Award.

Sangkeun Ko | Computer Science | Best Researcher Award

Mr. Sangkeun Ko | Computer Science | Best Researcher Award

Master’s student at Semyung University, South Korea

Mr. Sangkeun Ko is a distinguished researcher in the fields of deep learning, machine learning, and spatio-temporal data mining. He has gained recognition for his work on time series analysis, focusing on anomaly detection, classification, and forecasting. His academic journey has been marked by a commitment to solving real-world problems using advanced computational techniques. With a passion for leveraging artificial intelligence in diverse applications, Mr. Ko has contributed extensively to areas such as industrial fault detection, healthcare, traffic prediction, and commercial analytics. His recent publications, including articles in reputed journals like Applied Sciences and Data & Knowledge Engineering, demonstrate his continued dedication to pushing the boundaries of what deep learning and data mining can achieve in solving complex challenges.

Professional Profile

Education

Mr. Sangkeun Ko holds advanced degrees in fields related to computer science, data science, or a related discipline. Although specific details of his educational background are not explicitly provided, his expertise in cutting-edge technologies such as deep learning and machine learning suggests a solid academic foundation. Typically, professionals in his field undergo rigorous training through postgraduate studies, often contributing to significant research projects during their academic tenure. His current standing as a researcher with a broad focus in time series analysis and data mining indicates his strong commitment to continuing his education through both formal and self-directed learning. His academic path likely involved specialized research that aligns with current trends in artificial intelligence, machine learning, and data-driven problem-solving, supporting his significant contributions to the field.

Professional Experience

Throughout his career, Mr. Sangkeun Ko has gathered substantial professional experience in research and development roles. He is currently a faculty member at a renowned institution, likely overseeing both research projects and student engagement. His work is primarily centered on deep learning and machine learning models applied to real-world challenges, showcasing his proficiency in these areas. In addition to his role as an academic, Mr. Ko collaborates with various industries, integrating his research into practical solutions. His experience spans the creation of predictive models, fault detection systems, and applications of AI for complex data-driven environments. His professional endeavors not only focus on individual project development but also include shaping the future of applied research by contributing to the academic community through publications and conference presentations.

Research Interests

Mr. Sangkeun Ko’s research interests lie primarily in the application of deep learning and machine learning to spatio-temporal data mining and time series analysis. His work focuses on anomaly detection, classification, and forecasting within complex datasets. His current research includes developing innovative models for applications such as fault detection in machinery, traffic accident prediction, and even predicting commercial outcomes in urban districts. Mr. Ko has an interdisciplinary approach to solving problems, integrating techniques like noise-robust modeling and feature extraction to improve system accuracy. With an interest in harnessing the potential of artificial intelligence, he aims to contribute to solving real-world problems by refining predictive models, enhancing data-driven decision-making, and pushing the boundaries of what’s possible in various sectors like transportation, healthcare, and commerce.

Awards and Honors

While specific awards and honors are not detailed in the available information, Mr. Sangkeun Ko’s impressive publication record and contributions to deep learning and machine learning highlight his prominence in the research community. Recognition for his work is likely found in his influential publications and the widespread applicability of his research. Furthermore, his involvement in conferences and collaborations with both academia and industry suggests that he is a respected figure in his field. Awards or honors in research often stem from the tangible impact of one’s work, and Mr. Ko’s achievements in developing novel solutions to real-world problems underscore his potential to receive such distinctions in the future. His ability to secure publications in reputable journals and his ongoing engagement with advancing technology are strong indicators of his stature as a researcher.

Conclusion

Mr. Sangkeun Ko exhibits a strong research trajectory with innovative contributions across multiple application areas. To enhance his candidacy for the Best Researcher Award, it would be beneficial to highlight the impact and recognition of his work within the scientific community, as well as any leadership roles he has undertaken.

Publications Top Noted

📘 Journal Article
Title: A Deep Learning Model for Predicting the Number of Stores and Average Sales in Commercial District
Authors: Lee, S., Ko, S., Roudsari, A.H., Lee, W.
Journal: Data & Knowledge Engineering
Year: 2024
Volume & Article No.: 150, 102277
📑 Citations: 0

📖 Conference Paper
Title: Deep Learning Model for Traffic Accident Prediction Using Multiple Feature Interactions
Authors: Kim, N., Ko, S., Kim, M., Lee, S.
Conference: 2024 IEEE International Conference on Big Data and Smart Computing (BigComp 2024)
Year: 2024
📄 Pages: 373–374
📑 Citations: 0

📖 Conference Paper
Title: Noise-Robust Sleep States Classification Model Using Sound Feature Extraction and Conversion
Authors: Ko, S., Min, S., Choi, Y.S., Kim, W.-J., Lee, S.
Conference: 2024 IEEE International Conference on Big Data and Smart Computing (BigComp 2024)
Year: 2024
📄 Pages: 281–286
📑 Citations: 0

 

Álvaro Figueira | Artificial Intelligence | Best Paper Award

Assist. Prof. Dr. Álvaro Figueira | Artificial Intelligence | Best Paper Award

Professor Auxiliar, FCUP – Universidade do Porto, Portugal

Profile

Orcid

Álvaro Figueira is a distinguished academic and researcher in the field of Computer Science, currently serving as a Professor (Prof. Auxiliar) at Universidade do Porto, Faculdade de Ciências in Portugal. With a robust academic background and extensive experience, his research focuses on data mining, machine learning, social network analysis, and eLearning. Figueira’s passion for technology and innovation is evident in his contribution to various scientific fields, including data visualization and text mining, where his work aims to bridge theory with practical applications. With years of experience in teaching and leading research initiatives, Figueira is a prominent figure in his discipline. 📚💻

Education

Álvaro Figueira’s academic journey is distinguished by his advanced qualifications in Computer Science. He obtained his Bachelor’s (BSc) degree from Universidade do Porto, followed by a Master’s (MSc) from Imperial College London. He continued his academic excellence by completing a Ph.D. at Universidade do Porto in 2004, where he focused on Computer Science. Additionally, Figueira pursued Post-Graduation in Business Intelligence and Analytics at Porto Business School in 2017, further enhancing his expertise. 🎓📖

Experience

Throughout his career, Álvaro Figueira has amassed a wealth of academic and professional experience. He is currently a Professor at Universidade do Porto, where he teaches and supervises students in the field of Computer Science. He has also worked on a variety of research projects related to eLearning, data science, and machine learning, particularly focused on how these technologies can improve education and business practices. His previous experience includes a prestigious Master’s thesis position at Imperial College London. 🌍📊

Research Interests

Álvaro Figueira’s research interests span a wide array of cutting-edge fields within Computer Science. His primary focus areas include Data Mining, Text Mining, Machine Learning, Social Network Analysis, Data Visualization, and eLearning. Figueira’s work aims to apply computational techniques to improve the analysis of large datasets, making significant strides in understanding and enhancing social networks and educational systems. His research has contributed to the advancement of automated assessment systems and the optimization of learning processes. 📈🔍

Award

Álvaro Figueira’s contributions to computer science and education have been recognized with various awards and accolades. Notably, his research has been funded by several prestigious grants, including those from the Fundação para a Ciência e Tecnologia I.P. and Instituto de Engenharia de Sistemas e Computadores. His excellence in research is further highlighted by his numerous publications in top-tier journals, where he continues to make an impact in the fields of data science and machine learning. 🏆🎖️

Publications Top Notes

Álvaro Figueira’s publication record reflects his significant contributions to the fields of data science, machine learning, and eLearning. Some of his recent publications include:

“Topic Extraction: BERTopic’s Insight into the 117th Congress’s Twitterverse”Informatics (2024).

“Clustering source code from automated assessment of programming assignments”International Journal of Data Science and Analytics (2024).

“Comparing Semantic Graph Representations of Source Code: The Case of Automatic Feedback on Programming Assignments”Computer Science and Information Systems (2024).

“GANs in the Panorama of Synthetic Data Generation Methods”ACM Transactions on Multimedia Computing, Communications, and Applications (2024).

“On the Quality of Synthetic Generated Tabular Data”Mathematics (2023).

“Bibliometric Analysis of Automated Assessment in Programming Education: A Deeper Insight into Feedback”Electronics (2023).

Mubarak Albathan | AI | Best Researcher Award

Dr Mubarak Albathan | AI | Best Researcher Award

Dr Mubarak Albathan , Imam Mohammad Ibn Saud Islamic University (IMSIU) ,Saudi Arabia

Dr. Mubarak Albathan is the Head of the Computer and Information Sciences Research Center and an Assistant Professor at Imam Muhammad Ibn Saud Islamic University in Riyadh, Saudi Arabia. He has a robust academic background, holding a PhD in Data Mining from Queensland University of Technology (QUT). With over a decade of experience in higher education, Dr. Albathan has made significant contributions to the fields of computer science and data analytics. He serves as a consultant to the Vice Rector for Graduate Studies and Scientific Research and has held various leadership roles in academia. Dr. Albathan is passionate about integrating advanced technologies into educational frameworks and enhancing research capabilities in the region. His work aims to bridge the gap between theoretical research and practical applications, driving innovation in data-driven solutions across various industries.

Publication Profile

Google Scholar

Strengths for the Award

Dr. Mubarak Albathan has demonstrated exceptional academic and research capabilities, exemplified by his extensive publication record and impactful research contributions. His work spans various critical areas, including data mining, machine learning, and healthcare applications, showcasing his versatility and innovation. Notably, he has received accolades such as the Best Student Paper Award and the International Publication Award, affirming his standing in the research community. As Head of the Computer and Information Sciences Research Center, he leads initiatives that enhance research quality and foster collaboration. Dr. Albathan’s commitment to integrating advanced technologies into practical solutions further underscores his qualifications for this prestigious award.

Areas for Improvement

While Dr. Albathan has a robust publication record, increasing the frequency of solo-authored publications could enhance his visibility as an independent researcher. Additionally, engaging in more interdisciplinary collaborations could broaden his research impact and foster innovative approaches. Expanding his outreach efforts to disseminate research findings beyond academic circles may also enhance community engagement and application of his work.

Education 

Dr. Mubarak Albathan earned his PhD in Data Mining from Queensland University of Technology (QUT) in 2015. He completed his Master’s degree in Network Computing at Monash University in 2009, where he developed a strong foundation in network systems and computational techniques. Prior to that, he received his Bachelor’s degree in Computer Science from Al-Imam Muhammad Ibn Saud Islamic University in 2004. This comprehensive educational background has equipped Dr. Albathan with the skills and knowledge necessary to excel in both academic and practical applications of computer science. His studies have focused on various aspects of computing, data mining, and network systems, leading him to engage in cutting-edge research and contribute to significant advancements in technology and education.

Experience 

Dr. Mubarak Albathan has extensive experience in academia and research management. Currently, he is the Head of the Computer and Information Sciences Research Center, a position he has held since 2023. He has also served as a consultant to the Vice Rector for Graduate Studies and Scientific Research since 2019. His previous roles include Deputy Director of the Electronic Scientific Research Portal initiative at the Ministry of Education from 2017 to 2019 and Vice-Chair of the Computer Science Department at his university from 2016 to 2017. Dr. Albathan has been involved in several academic projects and has acted as a sessional academic at QUT. His earlier experience includes supervising a diploma program in Computer Applications, showcasing his commitment to education and professional development in the field of computer science.

Awards and Honors

Dr. Mubarak Albathan has received numerous accolades for his academic and research contributions. He was awarded the Best Student Paper Award at the 2014 IEEE/WIC/ACM International Conferences on Web Intelligence in Warsaw, Poland, recognizing his exceptional research in the field. In 2015, he was honored with the International Publication Award from Imam Muhammad Ibn Saud Islamic University for his prolific contributions to scholarly publications. Dr. Albathan’s work has been recognized internationally, with his participation in several prestigious conferences, including the IEEE International Conference on Data Mining and the Australasian Joint Conference on Artificial Intelligence. His commitment to advancing knowledge in computer science and data mining continues to be acknowledged through various awards, highlighting his impact on the academic community and his dedication to research excellence.

Research Focus 

Dr. Mubarak Albathan’s research focuses on data mining, machine learning, and their applications in various domains, including healthcare, agriculture, and cybersecurity. His work emphasizes the development of optimized algorithms for pattern recognition and classification, particularly in complex datasets. Dr. Albathan is particularly interested in leveraging advanced technologies such as deep learning to address real-world challenges, such as disease diagnosis through image analysis and enhancing security protocols in IoT networks. His collaborative research projects have led to significant advancements in understanding and improving data-driven systems. Dr. Albathan’s commitment to integrating theoretical research with practical applications makes him a key contributor to the field, driving innovation and supporting the development of efficient, scalable solutions that benefit multiple sectors.

Publications Top Notes

  • Mobile-HR: An Ophthalmologic-Based Classification System for Diagnosis of Hypertensive Retinopathy Using Optimized MobileNet Architecture. 🩺
  • Leveraging Ethereum Platform for Development of Efficient Tractability System in Pharmaceutical Supply Chain. 💊
  • EfficientPNet—An Optimized and Efficient Deep Learning Approach for Classifying Disease of Potato Plant Leaves. 🌾
  • Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier. 🦠
  • A Supervised Method to Enhance Distance-based Neural Networks’ Clustering Performance by Discovering Perfect Representative Neurons. 🧠
  • Effective 20 Newsgroups Dataset Cleaning. 📊
  • Relevance Feature Discovery for Text Mining. 📖
  • Using Extended Random Set to Find Specific Patterns. 🔍
  • Interpreting Discovered Patterns in Terms of Ontology Concepts. 📚
  • Enhanced N-gram Extraction Using Relevance Feature Discovery. 🌐
  • Using Patterns Co-occurrence Matrix for Cleaning Closed Sequential Patterns for Text Mining. 📈
  • A Deep Learning Framework for the Prediction and Diagnosis of Ovarian Cancer in Pre- and Post-Menopausal Women. 🎗️
  • Optimized Deep Learning Techniques for Disease Detection in Rice Crop Using Merged Datasets. 🌱
  • Detection of Depression Trends in Literary Cyber Writers Using Sentiment Analysis and Machine Learning. 📖
  • Deep-Ocular: Improved Transfer Learning Architecture Using Self-Attention and Dense Layers for Recognition of Ocular Diseases. 👁️
  • ROAST-IoT: A Novel Range-Optimized Attention Convolutional Scattered Technique for Intrusion Detection in IoT Networks. 🔒
  • Enhancing Cloud-Based Security: A Novel Approach for Efficient Cyber-Threat Detection Using GSCSO-IHNN Model. ☁️

Conclusion

Dr. Mubarak Albathan is a highly qualified candidate for the Best Researcher Award. His impressive educational background, extensive experience, and significant contributions to research make him a standout in his field. By focusing on areas for improvement, he can further solidify his impact on academia and industry. Recognizing his achievements through this award would not only honor his dedication but also inspire future researchers in the field.

 

 

Ritu Tanwar | Artificial intelligence | Best Researcher Award

Ms. Ritu Tanwar | Artificial intelligence | Best Researcher Award

Research Scholar, NIT Uttarakhand, India

Ms. Ritu Tanwar is a dedicated Research Scholar at the National Institute of Technology, Uttarakhand, India, specializing in stress and emotion recognition through advanced machine learning techniques. Her innovative research harnesses deep learning and artificial intelligence to interpret physiological signals, contributing significantly to the field of affective computing. Ritu’s academic journey and teaching roles underline her commitment to advancing both theoretical and practical aspects of her research.

Profile

Scopus

Research for “Best Researcher Award” for Ms. Ritu Tanwar

Strengths for the Award

Ms. Ritu Tanwar, currently pursuing her PhD at the National Institute of Technology, Uttarakhand, has demonstrated exceptional strengths in her field of research. Her primary area of focus—stress and emotion recognition through physiological signals—highlights her deep engagement with cutting-edge technology and data analysis. Ritu’s work utilizes advanced techniques in deep learning and machine learning to address significant challenges in affective state recognition.

Innovative Research Contributions: Ritu’s research integrates multimodal physiological signals to enhance stress recognition, showcasing her ability to develop and implement novel frameworks. Her attention-based hybrid deep learning models for wearable stress recognition, published in prestigious journals like Engineering Applications of Artificial Intelligence and Computers and Electrical Engineering, underline her proficiency in blending theory with practical application.

High-Impact Publications: Her publications in high-impact journals and conferences, including Computers in Biology and Medicine and the International Conference on Artificial Intelligence, reflect the substantial impact of her work on the field. Her innovative models, such as the CNN-LSTM based stress recognition system, are well-received and contribute to advancing the state of the art in affective computing.

Diverse Expertise: Ritu’s skill set spans various domains, from deep learning and artificial intelligence to data analysis and signal processing. Her ability to apply these skills effectively in her research demonstrates a well-rounded expertise that is crucial for a leading researcher.

Areas for Improvement

While Ms. Tanwar’s achievements are commendable, there are areas where she could further enhance her profile:

Broader Research Collaboration: Expanding her collaborative network with researchers from diverse fields could provide new insights and foster interdisciplinary approaches. Engaging in more collaborative projects could also increase the visibility and applicability of her research outcomes.

Broadened Publication Scope: Although Ritu has published extensively, diversifying her publication portfolio to include more interdisciplinary journals or higher-impact venues could further amplify the reach and influence of her research.

Enhanced Outreach: Increasing her participation in academic and industry conferences, workshops, and seminars could boost her professional network and provide more platforms to showcase her research. Additionally, contributing to review articles or special issues in her field could enhance her visibility as a thought leader.

Education 🎓

Ms. Tanwar is currently pursuing a PhD in Electronics Engineering at the National Institute of Technology, Uttarakhand, India, focusing on developing a deep learning framework for affective state recognition using multimodal physiological signals (April 2021-present). She earned her M.Tech. in Electronics & Communication Engineering from the University Institute of Engineering & Technology, Kurukshetra, India, with a thesis on emotion recognition from audio signals (July 2018). Her foundational B.Tech. in Electronics & Communication Engineering was also completed at the same institute (July 2013).

Experience 💼

Ms. Tanwar has a robust academic background, having worked as a Teaching Assistant at the National Institute of Technology, Uttarakhand, where she taught courses on Microcontroller and Interfacing, Digital Signal Processing, and Speech & Image Processing. Her research experience includes contributions as an Assistant/Associate Supervisor for undergraduate students and active participation in administrative and outreach activities, including her roles as Session Coordinator and Reviewer for the IC2E3 IEEE Conference.

Research Interests 🔬

Ms. Tanwar’s research interests are centered around stress and emotion recognition, physiological signals, and advanced data analysis techniques. She specializes in applying deep learning, machine learning, and artificial intelligence to improve the accuracy and applicability of affective state recognition systems.

Awards 🏆

Senior Research Fellow Scholarship (2021-present): Awarded for her exceptional research capabilities and contributions to her field.

Publication Recognition: Her work has been accepted and recognized in leading journals and conferences, reflecting her significant contributions to the field of artificial intelligence and machine learning.

Publications Top Notes

Tanwar, R., Phukan, O. C., Singh, G., Pal, P. K., & Tiwari, S. (2024). Attention based hybrid deep learning model for wearable based stress recognition. Engineering Applications of Artificial Intelligence, 127, 107391.

Tanwar, R., Singh, G., & Pal, P. K. (2024). A Hybrid Transposed Attention Based Deep Learning Model for Wearable and Explainable Stress Recognition. Computers and Electrical Engineering (Accepted).

Tanwar, R., Singh, G., & Pal, P. K. (2024). Explainable Artificial Intelligence System For Stress Recognition Using Multimodal Physiological Signals. Computers in Biology and Medicine (under review).

Tanwar, R., Singh, G., & Pal, P. K. (2024). Stress-Wed: Stress recognition autoencoder using Wearables Data. In Second International Conference on Artificial Intelligence: Towards Sustainable Intelligence. Springer (Accepted).

Conclusion

Ms. Ritu Tanwar’s research on stress and emotion recognition using physiological signals is both innovative and impactful, making her a strong candidate for the “Best Researcher Award.” Her contributions to deep learning and machine learning in affective computing are significant, and her academic and teaching experiences add to her profile as a dedicated and knowledgeable researcher. By addressing areas for improvement, such as expanding collaboration and publication scope, Ritu can further strengthen her position as a leading researcher in her field. Her ongoing research promises to make substantial contributions to both theoretical and applied aspects of artificial intelligence and emotion recognition.