73 / 100

Prof. Yuriy Chumlyakov | Materials Science | Best Researcher Award

head of laboratory at Tomsk State University, Russia

Yuriy Ivanovich Chumlyakov is a prominent Russian scientist renowned for his groundbreaking contributions to materials science and solid-state physics. Currently, he is the head of the Laboratory of Physics of Strength and Plasticity at the Siberian Physical-Technical Institute, Tomsk State University, and also a professor at Tomsk State University. Over his distinguished career, Chumlyakov has gained international recognition for his pioneering research on high-strength single crystals, including studies on mechanical twinning, thermoelastic martensitic transformations, and shape memory alloys. His work has not only enriched theoretical physics but also influenced practical applications in material engineering, particularly in areas like superelasticity and plastic deformation. Throughout his career, he has collaborated with leading research institutions globally and played a key role in advancing the scientific understanding of materials’ behavior under stress and transformation. His academic and professional pursuits have made him a leading figure in his field, contributing extensively to both research and teaching.

Professional Profile

Education

Yuriy Chumlyakov’s academic journey is marked by an unwavering commitment to advancing knowledge in solid-state physics. He completed his undergraduate degree at Tomsk State University, where he earned a diploma in physics in 1970. Building upon this foundation, he pursued graduate studies at the same institution, earning his Ph.D. in solid-state physics in 1980. His expertise in the field was further solidified when he obtained the prestigious Doctor of Science degree in 1989 from the Institute of Strength Physics and Materials Science, Russian Academy of Sciences, Tomsk. Chumlyakov’s education provided him with the deep theoretical understanding and practical research skills necessary for his long-term contributions to the study of material properties, including those related to crystal structures, plasticity, and shape memory alloys. His academic background has played an essential role in shaping his successful career as a researcher and educator, allowing him to mentor future generations of scientists.

Professional Experience

Yuriy Ivanovich Chumlyakov’s professional career spans several decades, with significant contributions to both academic research and the advancement of materials science. Since 1989, he has served as the head of the Laboratory of Physics of Strength and Plasticity at the Siberian Physical-Technical Institute, where he has overseen numerous research projects focused on the behavior of high-strength single crystals under various stress conditions. Additionally, since 1993, Chumlyakov has been a professor at Tomsk State University, educating students in solid-state physics and materials science. His career also includes a long tenure as a senior research worker at the same institute, where he initially gained prominence. Throughout his career, Chumlyakov has been involved in numerous international collaborations, contributing to the global scientific community. His leadership and extensive experience in experimental and theoretical physics have positioned him as a key figure in the study of materials’ mechanical properties and transformations.

Research Interests

Yuriy Chumlyakov’s research interests lie at the intersection of solid-state physics, materials science, and applied physics. His primary focus is on the behavior of single crystals, particularly in the context of mechanical twinning, plastic deformation, and fracture mechanisms. He has extensively studied thermoelastic martensitic transformations in homogeneous and non-homogeneous crystals, including materials like NiTi, FeNiCoAl, and TiNiFe. Chumlyakov’s work on shape memory alloys and superelasticity has contributed to advancing the understanding of materials that undergo reversible transformations when subjected to external stimuli, such as temperature or stress. His expertise also extends to the dislocation structures in crystals and the plastic deformation of single crystals, which are vital for applications in aerospace, automotive, and medical fields. The practical implications of his work are vast, especially in the development of advanced materials for engineering solutions, including applications in structural health monitoring and high-performance materials.

Awards and Honors

Yuriy Ivanovich Chumlyakov’s exemplary contributions to materials science have earned him numerous prestigious awards and honors over the years. He has been a recipient of multiple grants from the Russian Foundation for Basic Research and the Russian Ministry of Education, underscoring the significance of his research in advancing the field. Chumlyakov’s work has been widely recognized internationally, with honors including a fellowship from the Japan Society for the Promotion of Science (JSPS) and the prestigious George Miller Professorship at the University of Illinois. He has served on the editorial boards of leading journals such as the Journal of Physics of Metals and Metallography and as a guest editor for special issues on shape memory alloys in the ASME Journal of Engineering and Technology. Furthermore, his contributions to the scientific community have been acknowledged through his appointment as a permanent jury member of PhD and Doctor of Science councils at Tomsk State University. These honors reflect his standing as a leading researcher in his field.

Conclusion

Yuriy Ivanovich Chumlyakov is a highly deserving candidate for the Best Researcher Award. His long history of groundbreaking research, leadership in academia, global recognition, and extensive contributions to the fields of solid-state physics and materials science make him a standout figure in his discipline. His work on shape memory alloys and thermomechanical transformations is crucial in advancing both theoretical and practical aspects of materials science, particularly for engineering applications. Expanding his outreach and engaging with newer interdisciplinary fields would only further enhance the impact of his already impressive career.

Publications Top Noted

  • High-temperature thermoelastic martensitic transformations in Ni44Fe19Ga27Co10 single crystals
    • Authors: Timofeeva, E.E., Panchenko, E.Y., Zherdeva, M.V., Volochaev, M.N., Chumlyakov, Y.I.
    • Year: 2025
    • Journal: Materials Letters
    • Citations: 0
  • Effect of carbon on the shape memory effect of [1¯44]−Oriented Cr20Fe20Mn20Co35Ni4.9C0.1 high-entropy alloy single crystals under tension
    • Authors: Kireeva, I.V., Chumlyakov, Y.I., Pobedennaya, Z.V., Vyrodova, A.V.
    • Year: 2024
    • Journal: Materials Letters
    • Citations: 0
  • Cyclic stability of the elastocaloric effect in heterophase [001]-oriented TiNi single crystals
    • Authors: Surikov, N.Y., Panchenko, E., Chumlyakov, Y.I., Marchenko, E.
    • Year: 2024
    • Journal: Applied Physics Letters
    • Citations: 0
  • Influence of the number of particle variants on the cyclic stability of superelasticity in Ti-51.5at.%Ni single crystals
    • Authors: Timofeeva, E.E., Zherdeva, M.V., Tagiltsev, A.I., Panchenko, E.Y., Chumlyakov, Y.I.
    • Year: 2024
    • Journal: Materials Letters
    • Citations: 1
  • Thermal and Cyclic Stability of Two-Way Shape Memory Effect in Ni44Fe19Ga27Co10 Single Crystals
    • Authors: Timofeeva, E.E., Dmitrienko, M.S., Panchenko, E.Y., Fatkullin, I.D., Chumlyakov, Y.I.
    • Year: 2024
    • Journal: Russian Physics Journal
    • Citations: 0
  • Microstructure and Thermoelastic Martensitic Transformation in Ni-Low and -Rich Ni–Ti–Hf–Nb High-temperature Shape Memory Alloys
    • Authors: Eftifeeva, A.S., Timofeeva, E.E., Panchenko, E.Y., Yanushonyte, E.I., Chumlyakov, Y.I.
    • Year: 2024
    • Journal: Russian Physics Journal
    • Citations: 0
  • Orientation Dependence of Cyclic Stability of Superelasticity of Ti50.2Ni49.8 Alloy Single Crystals under Compression
    • Authors: Kireeva, I.V., Chumlyakov, Y.I., Vyrodova, A.V., Pobedennaya, Z.V., Marchenko, E.S.
    • Year: 2024
    • Journal: Physics of Metals and Metallography
    • Citations: 0
  • Influence of Heat Treatments on Martensitic Transformations and Elastocaloric Effect in Two-Phase (β + γ) NiFeGa Alloys
    • Authors: Kurlevskaya, I.D., Panchenko, E.Y., Tokhmetova, A.B., Timofeeva, E.E., Chumlyakov, Y.I.
    • Year: 2024
    • Journal: Physical Mesomechanics
    • Citations: 1
  • Superelasticity of [0 0 1]-oriented Fe–Mn–Al–Cr–Ni crystals with a negative temperature dependence of transformation stresses
    • Authors: Chumlyakov, Y.I., Kireeva, I.V., Pobedennaya, Z.V., Kuksgauzen, I.V., Kuksgauzen, D.A.
    • Year: 2024
    • Journal: Materials Letters
    • Citations: 0
  • Formation of texture and twinning at 296 K of “Artificial” polycrystals of an equiatomic Co20Cr20Fe20Ni20Mn20 High-entropy alloy
    • Authors: Kireeva, I.V., Chumlyakov, Y.I., Kuksgauzen, I.V., Kuksgauzen, D.A.
    • Year: 2024
    • Journal: Materials Letters
    • Citations: 0

 

Yuriy Chumlyakov | Materials Science | Best Researcher Award

You May Also Like