Vincelet Jobikha Arul Swamy | Materials Science | Women Researcher Award

Ms. Vincelet Jobikha Arul Swamy | Materials Science | Women Researcher Award

Vincelet Jobikha Arul Swamy | Saveetha Engineering College | India

Ms. Vincelet Jobikha Arul Swamy is an emerging researcher in physics, pursuing her Ph.D. with a specialization in nanomaterials for energy production and advanced glass ceramics for radiation shielding. She has consistently demonstrated academic excellence with distinction in her undergraduate and postgraduate studies and has expanded her expertise through active participation in national and international conferences, workshops, and specialized training. Her innovative contributions include the development of a nanomaterial that enhances solar energy efficiency and the design of novel glass systems for radiation protection, supported by multiple granted patents. She has also presented her findings widely, published in reputed Scopus-indexed journals, and earned recognition for her impactful research. Alongside academics, she has built strong communication and leadership skills through co-curricular achievements. With a focus on interdisciplinary and application-oriented science, she is steadily building a profile of measurable research influence. Her Scopus record reflects 1 citation, 1 document, and an h-index of 1.

Profile: Scopus | ORCID

Featured Publications

1. P. Vinothkumar, B. Yamini, S. Praveenkumar, and A. Vincelet Jobikha, “Synthesis, structural, and optical properties of lead-free Tm3+ ions doped zinc tellurite glass and Ho3+ ions doped zinc borophosphate glass for radiation shielding application,” Radiation Physics and Chemistry, vol. 112955, 2025.

Continue reading “Vincelet Jobikha Arul Swamy | Materials Science | Women Researcher Award”

Dr. Han Zhang | Materials Science | Best Researcher Award

Dr. Han Zhang | Materials Science | Best Researcher Award

Doctor at Northeastern University, China

Han Zhang is a dedicated and skilled researcher in metallurgical engineering, currently pursuing her Ph.D. at Northeastern University, China. Her research focuses on electromagnetic metallurgy, steel refining, and numerical simulation of multiphase flows, with significant contributions to the understanding of tundish flow behavior and inclusion removal. She has authored several high-quality publications in leading international journals, demonstrating both technical depth and innovation. Han is proficient in advanced simulation tools such as OpenFOAM, ANSYS, and Fluent, and actively participates in national research projects and academic conferences. Her strong foundation in both theory and practical application is supported by previous experience in industrial fluid systems and flow metering. While still developing her international collaborations and independent research leadership, Han Zhang shows exceptional potential as a rising researcher. Her work contributes meaningfully to the advancement of high-quality steel production and reflects a high level of academic commitment and technical excellence.

Professional Profile 

ORCID Profile 

Education

Han Zhang has a solid academic foundation in metallurgical engineering. She earned her bachelor’s degree from Chongqing University of Science and Technology in 2015, focusing on mineral composition and phase structure analysis in sintered ores. She then completed her master’s degree in steel metallurgy at Northeastern University in 2018, where she studied the behavior of molten steel in tundishes with channel-type induction heating through numerical simulations. Continuing at Northeastern University, she began her Ph.D. in 2020 at the Key Laboratory of Electromagnetic Processing of Materials, focusing on advanced refining and casting technologies. Her doctoral research emphasizes the electromagnetic control of molten steel flow, multiphase modeling, and process optimization. Throughout her academic journey, she has demonstrated consistent excellence in both theoretical understanding and applied research. Her progression from undergraduate to Ph.D. reflects a focused and deepening commitment to solving complex metallurgical challenges using cutting-edge computational and experimental approaches.

Professional Experience

Han Zhang has accumulated valuable professional experience that bridges academic research and industrial practice. From 2018 to 2020, she worked as an Assistant Engineer at the Liaoning Institute of Industrial Fluid Science, where she focused on industrial flow metering optimization and energy-saving technologies. Her work involved the design, manufacturing, and maintenance of flow metering devices, contributing to more efficient fluid systems in industrial operations. Concurrently, she enhanced her technical skills in instrumentation and data analysis, which later supported her doctoral research. Before this role, during her master’s and doctoral studies at Northeastern University, she engaged in multiple funded research projects related to electromagnetic processing and molten metal flow. Her hands-on experience with numerical simulation platforms, fluid modeling, and industrial-scale measurement devices positions her as a researcher with both academic insight and real-world engineering competence. This combination of research and industry exposure enables her to approach metallurgical challenges with practical and impactful solutions.

Research Interest

Han Zhang’s research interests lie in the interdisciplinary fields of metallurgical engineering, electromagnetic processing, and computational modeling. Her primary focus is on the behavior of molten steel during secondary refining and continuous casting, especially under the influence of electromagnetic fields. She investigates flow characteristics, inclusion behavior, and residence time distribution (RTD) within tundishes and reactors using advanced multiphase modeling techniques such as Euler-PBM coupling. She also explores intelligent alloy prediction and process control using machine learning and high-performance computing. Her studies aim to improve steel cleanliness, casting efficiency, and product quality in high-grade steel manufacturing. In addition, Han is skilled in using simulation platforms like OpenFOAM, ANSYS Fluent, and CFX for modeling fluid flow and heat transfer, which support her innovative approaches in virtual process optimization. Her work is both theoretically rich and industrially relevant, reflecting a strong alignment with current and emerging challenges in the steel industry.

Award and Honor

While specific awards and honors are not detailed in the available profile, Han Zhang’s achievements are reflected through her active involvement in prestigious national research projects and high-quality journal publications. She has contributed to major funded research supported by the National Natural Science Foundation of China and central university grants, which indicates recognition of her academic capabilities and research potential. Her inclusion as a first or co-author in respected journals such as Steel Research International and Metallurgical and Materials Transactions B highlights her scientific merit. Participation in international conferences and symposia further reflects her recognition in the academic community. Additionally, she holds the National Computer Proficiency Certificate (Level 2), and her consistent academic progression and technical excellence suggest strong internal recognition within her institution. Though no individual accolades are listed, her publication record and research leadership stand as honors in themselves, positioning her as a promising candidate for future academic and industry awards.

Conclusion

Han Zhang is an emerging talent in metallurgical engineering, combining strong academic training, practical industry experience, and a research focus aligned with pressing technological needs in steel production. Her work on electromagnetic processing, inclusion removal, and molten metal behavior demonstrates deep technical understanding and innovative problem-solving skills. With multiple first-author publications in high-impact journals, participation in national-level research, and a firm command of simulation technologies, she stands out as a capable and driven researcher. While she continues to build her international profile and independent leadership, her achievements thus far mark her as a strong candidate for research awards and academic recognition. Her dual strengths in computation and practical engineering provide her with a unique edge in advancing both the science and industry of metallurgy. Han Zhang is well-positioned to contribute significantly to the future of high-performance materials processing and is a valuable asset to any academic or research institution.

Publications Top Notes

1. Two‑Way PBM–Euler Model for Gas and Liquid Flow in the Ladle

  • Title: Two‑Way PBM–Euler Model for Gas and Liquid Flow in the Ladle

  • Journal: Materials

  • DOI: 10.3390/ma16103782

  • Published Date: May 17, 2023

  • Citations: 2–3 (based on public sources like ResearchGate and Google Scholar)

2. Deep Insight into the Pinch Effect in a Tundish with Channel‑Type Induction Heater

  • Title: Deep Insight into the Pinch Effect in a Tundish with Channel‑Type Induction Heater

  • Journal: Steel Research International

  • DOI: 10.1002/srin.202200181

  • Published Date: September 2022

  • Citations: Exact count not publicly listed, but cited in subsequent related works


Si Chen | Materials Science | Best Researcher Award

Dr. Si Chen | Materials Science | Best Researcher Award

Ph.D. student at Tongji University, China

Si Chen is a highly motivated and accomplished early-career researcher specializing in biomedical engineering, with a strong academic foundation in pharmaceutical sciences. Currently pursuing a Ph.D. at Tongji University, her research focuses on nanocatalytic medicine, single-atom catalysts, and antibacterial therapy. She has co-authored high-impact publications in prestigious journals such as Nano-Micro Letters and Advanced Materials, including a cover article and an ESI Highly Cited Paper. With hands-on experience in molecular biology, protein analysis, and translational cancer research, Si Chen has demonstrated both technical expertise and interdisciplinary collaboration. Her role in a national-level R&D project further highlights her capability in data management and research execution. Recognized with multiple academic awards and distinctions, she exemplifies both scientific rigor and academic dedication. Si Chen’s contributions position her as a strong candidate for research excellence awards, with continued potential for leadership in biomedical innovation and translational science.

Professional Profile 

Scopus Profile

Education

Si Chen has a solid educational foundation in pharmaceutical and biomedical sciences. She earned her MEng in Pharmaceutical Engineering from the University of Shanghai for Science and Technology, graduating with distinction and a strong GPA of 3.9/4.5. Her coursework included analytical and organic chemistry, toxicology, pharmacology, and pharmaceutical preparation technologies, equipping her with comprehensive knowledge of drug development and biological systems. Currently, she is pursuing a Ph.D. in Biomedical Engineering at Tongji University, focusing on nanocatalytic medicine, antibacterial mechanisms, and the application of single-atom catalysts in therapy. Her doctoral studies emphasize cutting-edge topics at the intersection of nanotechnology and biomedical applications, reflecting her transition from foundational pharmaceutical knowledge to advanced biomedical research. Si Chen’s academic progression demonstrates a consistent commitment to scientific excellence and interdisciplinary learning, positioning her well for a research career that bridges basic science with translational medical applications.

Professional Experience

Si Chen has cultivated extensive research experience through academic roles and collaborative scientific projects. She worked as a research assistant at Fudan University’s Department of Physiology and Biophysics from 2018 to 2021, where she contributed to several high-level biomedical studies. Her responsibilities included bacterial culture, protein purification, plasmid extraction, and Western blotting, giving her strong technical expertise in molecular biology. She also handled data organization for a national R&D project and was involved in budget and financial processes such as reimbursements—showcasing her project management skills. Earlier in her academic career, she participated in cancer research projects at Nanchang University, where she worked on drug interaction studies, mRNA and protein expression analysis, flow cytometry, and in vivo imaging. Through these diverse roles, she has demonstrated the ability to manage complex experiments and contribute to multidisciplinary teams. Her professional experience reflects a balanced profile of lab competence, analytical thinking, and research coordination.

Research Interest

Si Chen’s research interests lie at the intersection of nanotechnology, biomedical engineering, and pharmaceutical sciences. She is particularly focused on the development and application of single-atom catalysts and nanocatalytic medicine for antibacterial therapy. Her Ph.D. research at Tongji University explores how high iron-loading single-atom catalysts enhance reactive oxygen species (ROS) generation to combat bacterial infections, a novel and highly promising approach in antimicrobial research. She is also interested in piezocatalytic medicine, which leverages piezoelectric materials to trigger therapeutic responses—an emerging area that holds great potential for non-invasive biomedical applications. Additionally, her earlier work in cancer biology, including macrophage migration inhibitory factor (MIF) targeting and drug efficacy testing in vivo, highlights her interest in translational medicine. Si Chen’s research is defined by a drive to develop innovative, interdisciplinary solutions for critical healthcare challenges, particularly in antimicrobial resistance and cancer treatment, making her a valuable contributor to the field of biomedical innovation.

Award and Honor

Si Chen has received several notable awards that reflect her academic excellence, research impact, and extracurricular involvement. She was recognized with a Graduation with Distinction honor by the Shanghai Municipal Education Commission, highlighting her strong academic record during her undergraduate studies. Her research contributions have earned significant recognition, including co-authorship of a Highly Cited Paper in Advanced Materials—ranked in the top 1% by ESI—and a Most Viewed Paper Award from Wiley, placing her work among the top 10% in reader engagement. Si Chen was also the recipient of multiple student honors such as the Student Excellence Award and Student Leadership Award at the University of Shanghai for Science and Technology. Additionally, she served as an outstanding volunteer and actively participated in student leadership activities. These honors not only underline her academic and research capabilities but also illustrate her leadership, commitment, and service to the academic community.

Conclusion

Si Chen exemplifies the qualities of a dedicated and high-impact early-career researcher. Her strong educational background, hands-on experience in biomedical and pharmaceutical research, and clear focus on nanomedicine and antibacterial therapy distinguish her as a promising scientific talent. Through her publications in top-tier journals and participation in national-level research projects, she has shown an ability to contribute meaningfully to cutting-edge scientific inquiries. Her recognition through multiple academic and research awards speaks to both the quality and relevance of her work. While still early in her career, she has already built a well-rounded and impactful profile that combines technical skill, scientific curiosity, and collaborative engagement. Si Chen’s contributions to the fields of biomedical engineering and nanotechnology position her as a deserving candidate for prestigious research awards and suggest strong potential for continued innovation and leadership in the life sciences.

Publications Top Notes

  • Title: High Fe-Loading Single-Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy

  • Authors: Si Chen, Fang Huang, Lijie Mao, Zhimin Zhang, Han Lin, Qixin Yan, Xiangyu Lu, Jianlin Shi

  • Journal: Nano-Micro Letters

  • Year: 2025

  • Volume & Article: Vol. 17, Article No. 32

  • Citations: 8 (as of latest update)

  • Highlights:

    • Featured as Cover Article

    • Focus on ROS generation using high Fe-loading single-atom catalysts for antibacterial therap