Education
๐ Arunabh holds a Master of Science in Robotics and Autonomous Systems (Distinction) from the University of Lincoln, UK, where he earned 95% on his dissertation exploring Large Language Models for medical chatbot applications. He also completed a Bachelor of Technology in Electronics and Communication Engineering from Gauhati University, India, where he published two research papers on IoT and machine learning for agriculture. ๐๐พ
Experience
๐ผ As an Artificial Intelligence Engineer at UTAP Tech, Arunabh is leading the development of a computer vision-based cattle weight prediction system. He also gained research experience as a Research Assistant at the University of Lincoln, contributing to net zero strategy reviews and machine learning model optimizations for industrial processes under Dr. Pouriya H. Niknam’s supervision. ๐ค๐
Research Focus
๐ Arunabhโs research interests lie in the integration of artificial intelligence with robotics and healthcare. His current focus is on applying deep learning, retrieval-augmented generation (RAG), and large language models (LLMs) for medical chatbots, computer vision applications in agriculture, and reinforcement learning for robotics. ๐๐ฅ
Awards and Honors
๐ Arunabhโs excellence in academia is highlighted by his distinction in his masterโs degree. He has also contributed to multiple impactful research projects and received recognition for his innovative work in AI, IoT, and machine learning. ๐ฅโจ
Publications
๐ Arunabh has published research on various AI-driven applications. His notable works include:
“Systematic Analysis of Retrieval-Augmented Generation-Based LLMs for Medical Chatbot Applications” published in Machine Learning and Knowledge Extraction (2024), https://doi.org/10.3390/make6040116 cited by 10 articles.
“Monitoring and Control of Water Requirements as Part of an Agricultural Management System using IoT” presented at the 7th International Conference on Mathematics and Computers in Sciences and Industry (MCSI) in 2022, https://doi.org/10.1109/MCSI55933.2022.00025 cited by 15 articles.