Jing Li | Energy | Best Researcher Award

Assoc. Prof. Dr Jing Li | Energy | Best Researcher Award

Professor at Chongqing University, China

Dr. Jing Li is an Associate Professor at the School of Energy and Power Engineering, specializing in micro and nanoscale heat transfer, phase change energy storage, and thermal management materials. She earned her Ph.D. in Power Engineering and Engineering Thermophysics from the University of Science and Technology Beijing in 2015. With over 50 research publications, including 25 indexed in SCI, she has made significant contributions to the field. She has led and participated in numerous national and provincial research projects, including those funded by the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. Her research focuses on developing advanced thermal management solutions using phase change materials and nanomaterials. Dr. Li’s work has broad applications in energy efficiency and sustainability. With a strong track record in securing research funding and publishing high-impact studies, she is a key figure in advancing energy storage and heat transfer technologies.

Professional Profile 

Scopus Profile

Education

Dr. Jing Li holds a Ph.D. in Power Engineering and Engineering Thermophysics from the University of Science and Technology Beijing, which she earned in 2015. Her doctoral research focused on advanced thermal management, energy storage, and nanoscale heat transfer, laying a strong foundation for her future contributions to these fields. Prior to that, she completed her Bachelor of Engineering (B.E.) in Thermal Energy and Power Engineering from the same university in 2008. During her undergraduate studies, she developed a keen interest in thermophysical properties and energy utilization, which later guided her research trajectory. Her academic journey reflects a consistent focus on energy systems, phase change materials, and micro/nanoscale heat transfer, equipping her with the expertise to lead innovative research projects in these domains. With a strong educational background from a prestigious institution, Dr. Li has built a career dedicated to advancing thermal energy storage and heat transfer technologies.

Professional Experience

Dr. Jing Li is an Associate Professor at the School of Energy and Power Engineering, Chongqing University. She earned her Ph.D. in Power Engineering and Engineering Thermophysics from the University of Science and Technology Beijing in 2015. With extensive experience in thermal energy research, she has been actively involved in multiple national and provincial research projects, including those funded by the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. As a principal investigator and key research personnel, she has contributed to advancements in heat transfer, phase change energy storage, and nanoscale thermophysics. Dr. Li has also collaborated with industrial and academic institutions on energy-efficient technologies, furthering the applications of her research in practical engineering fields. Her dedication to innovative heat transfer solutions and her leadership in research projects have established her as a respected expert in energy and thermal physics.

Research Interest

Dr. Jing Li’s research primarily focuses on micro- and nanoscale heat transfer, phase change heat storage, and energy cascade utilization. Her work explores advanced heat storage materials, thermophysical properties, and near-field radiation effects, contributing to the development of high-efficiency thermal management systems. She has extensively studied multiphase flow heat transfer and the application of nanomaterials in enhancing thermal conductivity. Her recent research includes molecular dynamics simulations of composite phase change materials, graphene-enhanced thermal properties, and experimental studies of thermal diodes. Through her interdisciplinary approach, she bridges fundamental physics with practical applications in industrial waste heat recovery, electronics cooling, and renewable energy systems. Dr. Li’s contributions to energy-efficient materials and next-generation thermal management technologies provide valuable insights for sustainable energy solutions, making her research highly relevant to modern engineering and environmental challenges.

Award and Honor

Dr. Jing Li has received multiple awards and honors in recognition of her contributions to energy research and heat transfer studies. She has been awarded research grants from prestigious institutions such as the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. Her work on phase change materials and nanoscale heat transfer has been recognized in leading scientific journals, where she has published over 50 research papers, many indexed in SCI and EI. Additionally, she has been acknowledged for her outstanding research contributions through provincial and national talent programs, including the Chongqing Talent Plan. Dr. Li’s expertise in thermal energy storage has earned her invitations to international conferences as a keynote speaker and panelist. Her achievements not only highlight her excellence in academic research but also emphasize her impact on advancing energy-efficient technologies for industrial and environmental applications.

Conclusion

Dr. Jing Li is a highly accomplished researcher in the field of thermal energy storage and heat transfer. With a strong academic background, extensive research experience, and numerous high-impact publications, she has made significant contributions to advancing energy-efficient materials and thermal management systems. Her work on phase change materials, nanoscale heat transfer, and molecular dynamics simulations has provided valuable insights into next-generation energy technologies. Through leadership in research projects and active collaboration with industry, she continues to bridge the gap between fundamental science and practical applications. Her recognition through national and provincial awards further underscores her influence in the field. Dr. Li’s dedication to innovation, sustainability, and scientific excellence makes her a distinguished researcher and a valuable asset to the academic and engineering communities. Her work will continue to play a crucial role in addressing global energy challenges and developing advanced thermal management solutions.

Publications Top Noted

  • Title: Molecular dynamics simulation of thermal properties in composite phase change materials based on functionalized graphene and polyethylene glycol
    Authors: Yu Mao, Jing Li*, Xu Yang, Keai Tao, Kuan Sun, Shanshan Chen, Yujie Zheng
    Year: 2024
    Citation: Journal of Energy Storage, 94:112104

  • Title: Molecular dynamics simulation of thermal properties of modified graphene/n-octadecane composite phase change material
    Authors: Li J*, Mao Y, Yang X, et al.
    Year: 2024
    Citation: Journal of Physics: Conference Series, 2749(1):012008

  • Title: A polyurethane solid-solid composite phase change material based on modified graphene oxide for efficient thermal management
    Authors: Yang X, Liao Y N, Li J*, et al.
    Year: 2024
    Citation: Journal of Physics: Conference Series, 2749(1):012007

  • Title: Experimental study of single-phase change material thermal diode based on calcium chloride hexahydrate
    Authors: Yang Xu, Li Jing, Mao Yu, Tao Ke-Ai, Sun Kuan, Chen Shan-Shan, Zhou Yong-Li, Zheng Yu-Jie
    Year: 2024
    Citation: Acta Phys. Sin., 73(5): 058301

  • Title: Near-field radiative heat transfer between successive nanowires and its effects on thermal conductivity of mesoporous composites
    Authors: Jing Li*, Yanhui Feng, Xinxin Zhang, Xinming Zhang
    Year: 2016
    Citation: Applied Thermal Engineering, 93: 978-987

  • Title: Shape-stable phase change composites based on carbonized waste pomelo peel for low-grade thermal energy storage
    Authors: Shaowei Li, Jing Li*, Yang Geng, Yanning Liao, Shanshan Chen, Kuan Sun, Meng Li
    Year: 2022
    Citation: Journal of Energy Storage, 47: 103556/1-103556/10

  • Title: Theoretical and experimental research of thermal conductivity of silver (Ag) nanowires in mesoporous substrate
    Authors: Jing Li*, Yanhui Feng, Xinxin Zhang, Ge Wang
    Year: 2018
    Citation: International Journal of Heat & Mass Transfer, 121: 547-554

  • Title: Super-elastic and shape-stable solid-solid phase change materials for thermal management of electronics
    Authors: Yanning Liao, Jing Li*, Shaowei Li, Xu Yang
    Year: 2022
    Citation: Journal of Energy Storage, 52: 104751-104751

  • Title: Dual-functional polyethylene glycol/graphene aerogel phase change composites with ultrahigh loading for thermal energy storage
    Authors: Shaowei Li, Jing Li*, Yanning Liao, Shanshan Chen, Yujie Zheng, Meng Li, Kuan Sun
    Year: 2022
    Citation: Journal of Energy Storage, 54: 105337-105337

  • Title: Interfacial thermal resistance in mesoporous composites and its thermal conductivity
    Authors: Jing Li*, Yanhui Feng, Xinxin Zhang, Ge Wang
    Year: 2016
    Citation: CIESC Journal, 67(S1): 166-173

  • Title: Preparation and thermophysical properties of graphene nanoplatelets-octadecane phase change composite materials
    Authors: Cai Di, Jing Li*, Jiao Nai Xun
    Year: 2019
    Citation: Acta Physica Sinica, 68(10): 100502/1-100502/9

  • Title: Near-field Radiative Heat Transfer across a Pore and Its Effects on Thermal Conductivity of Mesoporous Silica
    Authors: Jing Li, Yanhui Feng*, Xinxin Zhang, Congliang Huang, Ge Wang
    Year: 2015
    Citation: Physica B, 456(1):237-243

  • Title: Study of Near-field Radiative Heat Transfer in Mesoporous Alumina
    Authors: Jing Li, Yanhui Feng*, Xinin Zhang, Congliang Huang, Ge Wang
    Year: 2015
    Citation: Chinese Physics B, 24(1): 14401-014401

  • Title: Near-field radiation across a spherical pore in mesoporous silica
    Authors: Jing Li, Yanhui Feng*, Xinxin Zhang, Congliang Huang, Mu Yang
    Year: 2015
    Citation: Chinese Journal of Engineering, 37(8): 1063-1068

  • Title: Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering
    Authors: Jing Li, Feng Yan-Hui*, Zhang Xin-Xin et al.
    Year: 2013
    Citation: Acta Phys. Sin, 62(18): 186501

  • Title: Numerical simulation of the flow and heat-transfer characteristics of an aligned external three-dimensional rectangular-finned tube bank
    Authors: Juwu Xu, Jing Li*, Yudong Ding, Qian Fu, Min Cheng, Qiang Liao
    Year: 2018
    Citation: Applied Thermal Engineering, 145:110-122

 

Muhammad Asif | Energy | Best Research Article Award

Mr. Muhammad Asif | Energy | Best Research Article Award

Student, Shenzhen University, China

Muhammad Asif 🇵🇰 is a dedicated physicist and educator with a strong focus on research in advanced electromagnetic absorption technologies. Currently pursuing his Ph.D. in Physics at Shenzhen University, China 🇨🇳, he has made significant contributions to THz wave absorbers and metamaterial technologies. With extensive teaching experience in various colleges in Pakistan, Asif has held leadership roles such as Head of the Physics Department at Superior College Abdul Hakeem. He continues to push the boundaries of research in physics while coaching and mentoring junior faculty members.

Publication Profile 

Scopus

Strengths for the Award:

  1. Research Focus and Innovation: Muhammad Asif’s work on ultra-wideband terahertz wave absorbers and metamaterials demonstrates a high level of innovation. His research explores cutting-edge applications in metasurface technology, with potential implications for solar energy harvesting, photovoltaic systems, THz imaging, and sensing.
  2. Publications in High-Impact Journals: The research is published in reputable journals such as Crystals and ScienceDirect, which highlights the significance and recognition of his work in the academic community.
  3. Novel Contribution to Metamaterials and THz Technology: Asif’s work on graphene-based polarization-insensitive structures and vertically structured metasurfaces demonstrates strong originality. His ability to design broadband absorbers with high absorption efficiency at various frequencies is a significant contribution to both THz and solar energy fields.
  4. Practical Applications: His research offers practical applications in energy conversion technologies, especially in solar absorption and photonic devices, which is a pressing topic in modern energy research.
  5. Diverse Research Topics: His ability to explore multiple aspects of material science, including electromagnetic simulations, Fabry-Perot resonance, and ultra-wideband absorption, shows his expertise and comprehensive approach to solving complex scientific problems.

Areas for Improvement:

  1. More Diverse Application Examples: While his research on absorbers is promising, providing more real-world case studies or experiments in his publications would strengthen the practical applicability of his findings, particularly in areas such as industrial applications or prototype development.
  2. Collaboration and Broader Impact: Collaborating with interdisciplinary teams or showcasing how his findings can impact other areas like telecommunications or environmental monitoring could broaden the impact and appeal of his work.
  3. Language Proficiency: Although his research publications are in English, improving communication skills (particularly in languages like Chinese) might open more doors for international collaboration and broaden the scope of his future research efforts.

Education

Muhammad Asif’s academic journey has been marked by excellence 🌟. He is currently a Ph.D. candidate at Shenzhen University, China 🇨🇳, focusing on THz absorbers. He holds an MS in Physics (2015-2017) and an M.Sc. in Physics (2013-2015) from Bahauddin Zakariya University, Multan, Pakistan 🎓. Prior to that, he completed his B.Sc. in Physics and Mathematics in 2013, followed by an F.Sc. in Pre-Engineering from Govt. College Vehari in 2011.

Experience

With over eight years of teaching experience 🏫, Muhammad Asif has held multiple prestigious positions, including Head of the Physics Department at Superior College Abdul Hakeem (2021-2023). He has also served as a Physics Lecturer at various campuses of the Superior Group of Colleges and Punjab Group of Colleges, excelling as both an instructor and class in-charge. Asif has contributed significantly to the academic success of his students while also coaching cricket teams 🏏 and mentoring junior staff.

Research Focus

Muhammad Asif’s research is centered on electromagnetic wave absorbers 🌐, specifically in the THz region and solar energy applications. His work involves the development of ultra-wideband absorbers using advanced metasurfaces and graphene-based materials. His studies contribute to the fields of energy harvesting, photonic systems, and THz technologies, with a focus on improving absorption efficiency and polarization independence across a wide range of frequencies 🔬.

Awards and Honours

Muhammad Asif has participated in international training workshops and development programs 🏅, including the International Training Workshop on “Material Modeling and Simulation” at Allama Iqbal Open University (2016). He has also been part of the Superior Executive Development Program (2018), reflecting his commitment to continuous learning and professional growth 📜.

Publications Top Notes

Ultra-Wideband Terahertz Wave Absorber Using Vertically Structured IGIGIM Metasurface (2024). Published in Crystals Link. Cited by 22 articles.

Graphene-based Polarization Insensitive Structure of Ultra-Wideband Terahertz Wave Absorber (2024). Published in Materials Science and Engineering: B Link. Cited by 30 articles.

Ultra-Wideband Solar Absorber via Vertically Structured GDPT Metamaterials (2024). Published in Journal of Photonic Energy.

Conclusion:

Muhammad Asif’s research displays a solid foundation in ultra-wideband terahertz absorbers and metamaterials with significant academic and practical contributions. His strong focus on energy-harvesting technologies and broadband absorbers positions him as a strong candidate for the Best Research Article Award. With some enhancement in real-world applications and international collaboration, his research could achieve broader recognition and have an even larger impact. His current work already showcases innovation and relevance to contemporary scientific challenges, making him a suitable contender for this award.

 

Haijie Dong | Fusion reactor design | Best Researcher Award

Mr. Haijie Dong | Fusion reactor design | Best Researcher Award

Engineer, Southwestern Institute of Physics, China

Mr. Haijie Dong, an esteemed engineer at the Southwestern Institute of Physics in China, has been recognized with the prestigious Best Researcher Award for his groundbreaking contributions to fusion reactor design 🏆. With his innovative work, Mr. Dong has significantly advanced the field, pushing the boundaries of scientific knowledge and bringing us closer to realizing the potential of fusion energy. His dedication and expertise serve as an inspiration to fellow researchers worldwide, highlighting the importance of collaboration and ingenuity in tackling humanity’s energy challenges.

Profile

orcid

Education

From September 2009 to June 2013, Mr. Haijie Dong pursued his Bachelor’s degree in Engineering Structure and Analysis at Xi’an Jiaotong University, laying the foundation for his future endeavors. 📚

Continuing his academic journey, from September 2013 to June 2016, he pursued a Master’s degree at the same institution, delving deeper into research activities centered around the application of new electromagneto-mechanical coupling analysis methods within the realm of Tokamak structures. 🎓 His notable contributions during this period include publications such as “Electromagneto-mechanical coupling analysis of a test module in J-TEXT Tokamak during plasma disruption” and “A Simplified Analytical Model for the Analysis of Magnetomechanical Dynamic Response of a Test Module in J-TEXT Tokamak.” 📝 These publications underscore Mr. Dong’s dedication to advancing the understanding and application of electromagnetics in fusion reactor design.

Experience

Mr. Haijie Dong embarked on a pivotal role at the China Ship Scientific Research Center, where he spearheaded design and research efforts focused on deep-sea equipment. Due to the sensitive nature of his achievements, detailed introductions are withheld to uphold confidentiality protocols. 🌊

Transitioning to the Southwestern Institute of Physics in June 2020, Mr. Dong embarked on a multifaceted journey, concurrently pursuing a Doctoral degree while contributing significantly to fusion reactor design and engineering research. His focus on electromagnetic and structural analysis has yielded noteworthy publications, including “Maxwell force analysis of CN HCCB TBM based on preliminary design” and “Electromagnetic analysis of HCCB TBM-set during plasma major disruptions.” 🚀 These publications underscore his commitment to advancing the understanding and application of electromagnetic principles in fusion reactor design, marking him as a prominent figure in the field.

Contribution

Our research group at Xi’an Jiaotong University has pioneered a new and efficient numerical method based on the Lagrangian approach, revolutionizing the calculation of dynamic responses in Tokamak structures. 🌟 This method, adept at considering electromagneto-mechanical coupling effects, has demonstrated exceptional accuracy when applied to benchmark problems, aligning closely with experimental results. Currently, our focus lies on its implementation in actual Tokamak structures. 🛠️ Representative works, including “Numerical analysis of electromagneto-mechanical coupling using Lagrangian approach and adaptive time stepping method,” published in the International Journal of Applied Mechanics, underscore our commitment to advancing fusion engineering. 📈 Other publications in prestigious journals like Fusion Engineering and Design and IEEE Transactions on Plasma Science further highlight our impactful contributions.

Publications Top Notes

  1. “Electromagnetic analysis of HCCB TBM-set during plasma major disruptions”
    • Fusion Engineering and Design (2024)
    • Authors: Haijie Dong, Xiang Liu, Xuru Duan, Qian Sheng, Xinghua Wu, Xiaoyu WANG
    • DOI: 10.1016/j.fusengdes.2023.114121
    • 🌌
  2. “Numerical method and experimental validation of the magneto-thermal-mechanical coupling problem with application to tokamak structures”
    • Applied Mathematical Modelling (2023)
    • Authors: Li, X.; Xue, L.; Chen, R.; Dong, H.; Li, Y.; Wang, S.; Pan, Y.; Chen, Z.
    • DOI: 10.1016/j.apm.2023.01.044
    • 🧲
  3. “Maxwell force analysis of CN HCCB TBM based on preliminary design”
  4. “Numerical analysis method of dynamic derivatives of ground effect vehicle in viscous flow,地效翼船爬升角导数数值分析方法”
  5. “A Simplified Analytical Model for the Analysis of Magnetomechanical Dynamic Response of a Test Module in J-TEXT Tokamak”
    • IEEE Transactions on Plasma Science (2019)
    • Authors: Li, X.; Dong, H.; Yuan, H.; Wang, K.; Yang, J.; Wang, W.; Chen, Z.
    • DOI: 10.1109/TPS.2019.2928822
    • ⚡
  6. “Modeling of Ohmic Disruptive Discharge in J-TEXT Using the Tokamak Simulation Code”
    • IEEE Transactions on Plasma Science (2018)
    • Authors: Yang, J.; Wang, H.; Chu, D.; Shi, B.; Zhang, Q.; Qi, J.; Zhang, M.; Dong, H.; Deng, H.; Wang, W.
    • DOI: 10.1109/TPS.2018.2827927
    • 🌀
  7. “Electromagneto-mechanical coupling analysis of a test module in J-TEXT Tokamak during plasma disruption”
  8. “Numerical analysis of electromagneto-mechanical coupling using Lagrangian approach and adaptive time stepping method”
    • International Journal of Applied Mechanics (2014)
    • Authors: Li, W.; Dong, H.; Yuan, Z.; Chen, Z.
    • DOI: 10.1142/S1758825114500513
    • 📐