Mohammad Madani | Chemistry | Best Research Article Award

Dr. Mohammad Madani | Chemistry | Best Research Article Award

Polymeric Nanocomposite at University of Tehran, Iran

Dr. Mohammad Madani is a distinguished researcher in polymer chemistry and nanotechnology. With a strong academic background and extensive research experience, he has contributed significantly to the fields of electrospinning, nanofibers, and polymeric materials. He has been affiliated with renowned institutions, including the University of Tehran and Qatar University, working on advanced polymeric materials with applications in membranes, sensors, and nanocomposites. His collaborative research with international teams has resulted in several high-quality publications in leading journals. Throughout his career, he has been involved in pioneering studies that bridge fundamental chemistry with industrial applications. His expertise in organic-inorganic hybrid materials, functional nanofibers, and membrane technology highlights his dedication to advancing material sciences. Dr. Madani’s work has had a profound impact on fields such as medical sciences, environmental engineering, and advanced materials development, making him a well-respected scientist in his domain.

Education

Dr. Madani completed his Bachelor of Science in Pure Chemistry from the University of Tehran in 2002. He continued his studies at the same institution, earning a Master of Science in Organic Chemistry in 2006, where he focused on developing crosslinkable medium-density polyethylene on a semi-industrial scale. His doctoral research, completed in 2010, specialized in nanofiber preparation via electrospinning, a cutting-edge technique in polymer chemistry. His Ph.D. dissertation, supervised by Dr. N. Sharifi-Sanjani, explored novel methods to fabricate organic-inorganic hybrid nanofibers. Dr. Madani further expanded his expertise through a postdoctoral project at Qatar University (2012–2014), where he worked on polymeric adhesives containing carbon nanotubes. Additionally, he served as a Scientific Board member at the Agricultural Biotechnology Research Institute of Iran (2014–2020), contributing to material science applications in agricultural biotechnology. His educational background has provided a strong foundation for his research in polymeric materials and nanotechnology.

Professional Experience

Dr. Madani has held various prestigious academic and research positions. He served as a Scientific Board Member at the Agricultural Biotechnology Research Institute of Iran (ABRII) from 2014 to 2020, where he contributed to the development of polymeric and nanomaterial-based solutions for agricultural applications. During his postdoctoral tenure at Qatar University (2012–2014), he worked extensively on carbon nanotube-based polymeric adhesives, a project that bridged academia and industrial applications. Additionally, he has been affiliated with the University of Tehran, where he conducted groundbreaking research in electrospinning, membrane separation, and nanofiber synthesis. His expertise extends to supervising students, collaborating on international research projects, and publishing extensively in high-impact chemistry and engineering journals. Dr. Madani has also contributed to the development of advanced polymeric materials for applications in membrane technology, sensors, and biomedical sciences, positioning him as a leading expert in his field.

Research Interests

Dr. Madani’s research primarily focuses on polymeric materials, electrospinning techniques, nanofiber synthesis, and membrane separation technologies. He has made significant contributions to the development of organic-inorganic hybrid nanofibers, which have applications in filtration, drug delivery, and energy storage. His work on polystyrene/titanium dioxide (PS/TiO₂) composite nanofibers has improved the surface-to-volume ratio of materials used in advanced material engineering. Additionally, he has investigated hollow fiber membrane contactors for use in medical and pharmaceutical applications. His recent projects include carbon nanotube-reinforced adhesives, which have potential industrial applications in electronics, aerospace, and biomedical engineering. Dr. Madani’s interdisciplinary approach integrates polymer science, nanotechnology, and material engineering, making his research impactful across multiple scientific domains. His dedication to developing novel materials continues to push the boundaries of polymer chemistry and applied nanotechnology.

Awards and Honors

Dr. Madani has received recognition for his contributions to polymer chemistry and nanotechnology. His research on nanofibers, membrane technology, and polymer composites has been acknowledged in international forums. He has published in high-impact journals, earning citations and recognition from peers in material science, chemical engineering, and nanotechnology. He has also been an invited speaker at scientific conferences, where he has presented his innovative research on advanced polymeric materials. As a postdoctoral researcher at Qatar University, he played a crucial role in developing carbon nanotube-based adhesives, a project that earned recognition for its industrial applicability. His contributions to hollow fiber membrane contactors in medical sciences have been widely appreciated. Dr. Madani’s commitment to cutting-edge research has positioned him as a leading figure in polymer chemistry, and he continues to contribute to scientific advancements in materials science and engineering.

Conclusion

Dr. Mohammad Madani is a strong candidate for the award based on his contributions to polymer chemistry, electrospinning, and nanomaterials. However, to be a top contender, he should further enhance the visibility and impact of his work through higher-impact publications, patents, and industry collaborations. If his nominated research article presents novel advancements in polymer science or nanotechnology, he would be a worthy recipient.

Publications Top Noted

  • Prediction of nanofiber diameter and optimization of electrospinning process via response surface methodology

    • Authors: N. Naderi, F. Agend, R. Faridi-Majidi, N. Sharifi-Sanjani, M. Madani
    • Year: 2008
    • Citations: 32
  • PS/TiO₂ (polystyrene/titanium dioxide) composite nanofibers with higher surface-to-volume ratio prepared by electrospinning: Morphology and thermal properties

    • Authors: M. Madani, N. Sharifi-Sanjani, A. Hasan-Kaviar, M. Choghazardi
    • Year: 2013
    • Citations: 28
  • Distinguished discriminatory separation of CO₂ from its methane-containing gas mixture via PEBAX mixed matrix membrane

    • Authors: P.A. Gamali, A. Kazemi, R. Zadmard, M.J. Anjareghi, A. Rezakhani, R. Rahighi, M. Madani
    • Year: 2018
    • Citations: 19
  • Multi-phase composite nanofibers via electrospinning of latex containing nanocapsules with core-shell morphology

    • Authors: R. Faridi-Majidi, M. Madani, N. Sharifi-Sanjani, S. Khoee, A. Fotouhi
    • Year: 2012
    • Citations: 19
  • Preparation of granular crosslinkable medium-density polyethylene

    • Authors: M. Madani, N. Sharifi-Sanjani, E. Rezaei-Zare, R. Faridi-Majidi
    • Year: 2007
    • Citations: 17
  • Preparation of nanocapsules via emulsifier-free miniemulsion polymerization

    • Authors: M. Barari, R. Faridi-Majidi, M. Madani, N. Sharifi-Sanjani, M.A. Oghabian
    • Year: 2009
    • Citations: 14
  • Magnetic polystyrene nanocapsules with core-shell morphology obtained by emulsifier-free miniemulsion polymerization

    • Authors: M. Madani, N. Sharifi-Sanjani, R. Faridi-Majidi
    • Year: 2011
    • Citations: 13
  • A novel potentiometric Ni²⁺-sensor based on a Ni²⁺ ion-imprinted polymer

    • Authors: N. Hamidi, T. Alizadeh, M. Madani
    • Year: 2018
    • Citations: 10
  • Aureole nanofibers by electrospinning of PAMAM-PEO solution

    • Authors: M. Madani, N. Sharifi-Sanjani, R. Iraji-Rad
    • Year: 2009
    • Citations: 9
  • Applications of Hollow Fiber Membrane Contactors in Advanced Medical Sciences and Pharmaceutics

    • Authors: H. Tabesh, G. Amoabediny, M. Madani, M.H. Gholami, A. Kashefi, K. Mottaghy
    • Year: 2012
    • Citations: 5
  • Preparation of manganese oxide–polyethylene oxide hybrid nanofibers through in situ electrospinning

    • Authors: M. Madani, N. Sharifi-Sanjani, S. Khoee, A. Hasan-Kaviar, A. Kazemi
    • Year: 2010
    • Citations: 5
  • Synthesis of Calcium Carbonate-Polyethylene Oxide Hybrid Nanofibers Through In-Situ Electrospinning

    • Authors: R. Faridi-Majidi, N. Sharifi-Sanjani, M. Madani
    • Year: 2008
    • Citations: 5
  • Preparation of core-shell and hollow fibers using layer-by-layer (LbL) self-assembly of polyelectrolytes on electrospun submicrometer-scale silica fibers

    • Authors: A. Kazemi, J. Lahann, M. Madani, N. Sharifi-Sanjani, A. Hasan-Kaviar
    • Year: 2010
    • Citations: 2
  • Using Electrospinning Technique for Preparation of Cobalt Hydroxide Nanoparticles

    • Authors: M. Madani, A.S. Hamouda
    • Year: 2016
    • Citations: 1
  • Preparation of polyethylene oxide-cobalt hydroxide hybrid nanofibers

    • Authors: M. Madani
    • Year: —-
    • Citations: —-

 

Lin Hu | Chemistry | Best Researcher Award

Dr. Lin Hu | Chemistry | Best Researcher Award

Jiaxing University, China

Dr. Hu Lin, a Ph.D. and Master’s supervisor, is an accomplished researcher specializing in organic and perovskite solar cells, PEDOT:PSS conductive polymers, and flexible electronic device fabrication. After earning his Master’s degree from Nanchang University in 2016 and his Ph.D. from Huazhong University of Science and Technology in 2019, he joined Jiaxing University. Despite being early in his academic career, Dr. Hu has made remarkable contributions, publishing over 30 high-impact SCI papers in esteemed journals such as Advanced Materials and Journal of Materials Chemistry A. His innovative approach is further reflected in six patent applications, three of which have been granted. As both a mentor and a researcher, he plays a pivotal role in advancing renewable energy technologies and materials science. With a strong foundation in cutting-edge research and a growing reputation, Dr. Hu Lin exemplifies excellence in academic productivity and innovation.

Professional Profile

Education

Dr. Hu Lin’s academic journey reflects a strong foundation in materials science and innovation. He earned his Master’s degree from Nanchang University in 2016 under the guidance of Professor Yiwang Chen, focusing on advanced materials research. Building on this, he pursued his Ph.D. at Huazhong University of Science and Technology, completing it in 2019 under the mentorship of Professor Yinhua Zhou. During his doctoral studies, Dr. Hu delved deeper into the development of organic and perovskite solar cells, PEDOT:PSS conductive polymers, and flexible electronic devices, establishing himself as an expert in these fields. His rigorous academic training equipped him with the technical expertise and innovative mindset needed to tackle critical challenges in renewable energy and materials science. These educational experiences laid the groundwork for his impactful research career and his ongoing contributions as a faculty member and mentor at Jiaxing University.

Professional Experience

Dr. Hu Lin has rapidly established himself as a prominent researcher and educator in materials science. In 2019, he joined Jiaxing University as a faculty member immediately after completing his Ph.D. at Huazhong University of Science and Technology. His professional work focuses on cutting-edge research in organic and perovskite solar cells, PEDOT:PSS conductive polymers, and flexible electronic devices—areas of significant importance for renewable energy and advanced electronics. As both a researcher and a Master’s supervisor, Dr. Hu has published over 30 high-impact SCI papers in renowned journals such as Advanced Materials and Advanced Functional Materials. His innovative contributions extend beyond academia, with six patent applications, including three granted patents, underscoring his commitment to translating research into practical solutions. Dr. Hu’s dedication to academic excellence, innovation, and mentorship has solidified his reputation as a rising leader in materials science and renewable energy technologies.

Research Interest

Dr. Hu Lin’s research interests lie at the forefront of materials science, with a strong focus on renewable energy and advanced electronic devices. His work centers on organic and perovskite solar cells, exploring innovative approaches to improve their efficiency, stability, and scalability for practical applications. Additionally, he specializes in PEDOT:PSS conductive polymers, investigating their potential as versatile materials for flexible and transparent electronics. Dr. Hu is also dedicated to advancing the fabrication of flexible electronic devices, which have promising applications in wearable technology and next-generation displays. By combining fundamental research with practical innovations, he aims to address critical challenges in energy sustainability and device miniaturization. His research not only contributes to the academic understanding of these materials but also paves the way for real-world applications, making significant strides in both environmental and technological advancements. Dr. Hu’s work embodies a vision of merging science with innovation for a sustainable future.

Award and Honor

Dr. Hu Lin has been recognized for his exceptional contributions to materials science and renewable energy research through various awards and honors. Although specific accolades are not detailed in his profile, his accomplishments as a prolific researcher and innovator speak volumes about his growing reputation. With over 30 high-impact publications in prestigious journals such as Advanced Materials and Advanced Functional Materials, and multiple granted patents, Dr. Hu’s work has undoubtedly earned him respect in the academic and scientific communities. His early-career achievements, including groundbreaking advancements in organic and perovskite solar cells, showcase his potential for further recognition at both national and international levels. As a Master’s supervisor and active contributor to cutting-edge technologies, Dr. Hu’s dedication to innovation and mentorship positions him as a strong contender for prestigious awards in renewable energy, materials science, and applied research in the future.

Conclusion

Hu Lin is a strong candidate for the Best Researcher Award. His prolific publishing record, innovative contributions in cutting-edge research areas, and dedication to both academic and applied advancements establish him as a rising star in materials science. Addressing the areas of improvement, such as showcasing the broader impact of his research and securing notable international recognition, could further solidify his eligibility. Overall, his accomplishments and potential make him a highly competitive nominee for this award.

Publications top noted

  • Title: Ionized Phenanthroline Derivatives Suppressing Interface Chemical Interactions with Active Layer for High-efficiency Organic Solar Cells with Exceptional Device Stability
    Authors: Hu, L., Quan, J., Li, J., Li, Z., Chen, Y.
    Journal: Advanced Materials
    Year: 2024
    Volume: 36(49), Article number 2413232
    Citations: 1
  • Title: PEDOT Counterions Enabled Oriented Polyaniline Nanorods for High Performance Flexible Supercapacitors
    Authors: Jin, Y., Li, Z., Huang, S., Wang, H., Li, Z.
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2024
    Volume: 697, Article number 134461
    Citations: 3
  • Title: Ethyl Thioglycolate Assisted Multifunctional Surface Modulation for Efficient and Stable Inverted Perovskite Solar Cells
    Authors: Wang, Y., Wang, F., Song, J., Yan, W., Gao, F.
    Journal: Advanced Functional Materials
    Year: 2024
    Volume: 34(38), Article number 2402632
    Citations: 4
  • Title: Small Molecule Perylene Diimide Derivatives with Different Bay Site Modifications as Cathode Interface Layers for Organic Solar Cells
    Authors: Wang, Y., Zhou, D., Lan, S., Xu, Z., Chen, L.
    Journal: Chemical Engineering Journal
    Year: 2024
    Volume: 496, Article number 154206
    Citations: 2
  • Title: N-Type Small Molecule Electrolyte Cathode Interface Layer with Thickness Insensitivity for Organic Solar Cells
    Authors: Zhou, D., Wang, Y., Li, Y., Xu, Z., Chen, L.
    Journal: Nano Energy
    Year: 2024
    Volume: 128, Article number 109890
    Citations: 5
  • Title: Synergistically Modulating the Bay and Amid Sites of a Perylene Diimide Cathode Interface Layer for High-Efficiency and High-Stability Organic Solar Cells
    Authors: Wang, J., Zhou, D., Quan, J., Li, Z., Chen, L.
    Journal: ACS Sustainable Chemistry and Engineering
    Year: 2024
    Volume: 12(30), Pages 11385–11395
    Citations: 3
  • Title: Biobased Thermoset Substrate for Flexible and Sustainable Organic Photovoltaics
    Authors: Tian, J., You, Y., Zhou, H., Xie, Y., Hu, X.
    Journal: Advanced Functional Materials
    Year: 2024
    Volume: 34(29), Article number 2400547
    Citations: 5
  • Title: Synchronous Modulation of Hole-Selective Self-Assembled Monolayer and Buried Interface for Inverted Perovskite Solar Cells
    Authors: Wang, Y., Ye, J., Song, J., Li, Z., Yan, W.
    Journal: Cell Reports Physical Science
    Year: 2024
    Volume: 5(6), Article number 101992
    Citations: 1
  • Title: Doping of ZnO Electron Transport Layer with Organic Dye Molecules to Enhance Efficiency and Photo-Stability of the Non-Fullerene Organic Solar Cells
    Authors: Hu, L., Han, L., Quan, J., Li, Z., Chen, L.
    Journal: Small
    Year: 2024
    Volume: 20(21), Article number 2310125
    Citations: 3
  • Title: N-Type Small Molecule Electron Transport Layers with Excellent Surface Energy and Moisture Resistance Siloxane for Non-Fullerene Organic Solar Cells
    Authors: Li, Y., Zhou, D., Han, L., Xu, H., Chen, L.
    Journal: Small
    Year: 2024
    Volume: 20(19), Article number 2308961
    Citations: Not specified in the provided data.

YI-CHENLEE | Chemistry | Best Researcher Award

Assoc. Prof. Dr. YI-CHENLEE | Chemistry | Best Researcher Award

Associate Professor, Department of Seafoo d Science, National Kaohsiung University of Scienc e an d Technology, Kaohsiung,Taiwan

Associate Profes李憶甄 (Lee, Yi Chen) is an Associate Professor at the Department of Aquatic Food Science, National Kaohsiung University of Science and Technology (NKUST), Taiwan. She also serves as the Vice Director of Research and Development at NKUST’s Water Circle College. With a focus on food science, especially in food safety, preservation, and sensory analysis, Dr. Lee has a strong academic and industry background. She completed her Ph.D. in Food Science from National Pingtung University of Science and Technology, after earning her master’s and bachelor’s degrees from National Kaohsiung University of Science and Technology. Her research interests include the development of innovative food technologies to enhance food quality, safety, and shelf life. Throughout her career, she has collaborated with various researchers and institutions, contributing to numerous high-impact publications in food science and technology.sor,Department of Seafoo d Science, National Kaohsiung University of Scienc e an d Technology, Kaohsiung,Taiwan

Profile 

Scopus

Education 

Dr. Lee earned her Ph.D. in Food Science from National Pingtung University of Science and Technology, Taiwan, between 2010 to 2015. Prior to that, she completed her M.S. in Aquatic Food Science from National Kaohsiung University of Science and Technology (2008-2010), and her B.S. in Aquatic Food Science from the same institution (2004-2008). Her academic journey in food science, with a focus on aquatic food products, laid the foundation for her expertise in food safety, preservation, and sensory analysis. The combination of a strong theoretical education and hands-on research in these areas has driven her career forward as a professor and researcher in food technology. Her commitment to academic excellence has also been evident in her role in mentoring students and guiding emerging scholars in her field.

Experience 

Dr. Lee has a diverse career blending academia and industry. She is currently an Associate Professor at National Kaohsiung University of Science and Technology, where she also serves as Vice Director of Research and Development at the Water Circle College since 2016. Before her tenure at NKUST, Dr. Lee worked in various industry roles, including Deputy Manager in Quality Management at Everlight Biotech, Research and Development Manager at Zhen Yi Food Co., and Lecturer at multiple universities, including Chang Jung Christian University and National Taitung University. Her industry experience has enriched her academic research, especially in food processing, quality control, and product innovation. Additionally, her prior role as a Lecturer and Assistant at National Kaohsiung University of Science and Technology (2010–2016) provided her with substantial teaching and research management experience, shaping her academic leadership.

Research Focus 

Dr. Lee’s research primarily revolves around food safety, preservation technologies, and sensory analysis. She is particularly focused on the application of high-pressure processing (HPP) and microwave-assisted induction heating (MAIH) technologies to extend the shelf life of food products while maintaining nutritional and sensory quality. Her work aims to improve food safety by developing innovative methods to control microbial growth in perishable products like seafood, ready-to-eat meals, and beverages. Additionally, she investigates food inspection and analysis techniques to enhance quality assurance in food production. Her research also includes the application of novel processing methods to reduce food waste and improve the sustainability of food production systems. Dr. Lee’s interdisciplinary approach has led to impactful findings in food preservation, contributing to both academic literature and real-world industry practices.

Publications

  1. Application of high-hydrostatic pressure to extend shelf life of miso-marinated escolar loins during cold storage 🐟📦
  2. Developing novel microwave-assisted induction heating (MAIH) technology for heating in-packaged ready-to-eat chicken breast products 🍗💡
  3. Application of novel microwave-assisted induction heating technology for extending the shelf life of ready-to-eat rice through microbial, physical, and chemical quality preservation 🍚🌡️
  4. Comparison of high-hydrostatic pressure and frozen treatments on raw freshwater clam marinated in soy sauce: Impact on microbiological and organoleptic qualities 🦪❄️
  5. Inactivation Kinetics of Foodborne Pathogens in Carrot Juice by High-Pressure Processing 🥕🔬
  6. Determining the Optimal Vacuum Frying Conditions for Silver Herring (Spratelloides gracilis) Using the Response Surface Methodology 🐟🍟
  7. Physicochemical Quality Retention during Cold Storage of Prepackaged Barramundi Meat Processed with a New Microwave-Assisted Induction Heating Technology 🐠❄️
  8. Effect of High-Pressure Processing on the Qualities of Carrot Juice during Cold Storage 🥕💧
  9. Green extraction and purification of chondroitin sulfate from jumbo squid cartilage by a novel procedure combined with enzyme, ultrasound, and hollow fiber dialysis 🦑🧬
  10. Design and Implementation of a Recommendation System for Buying Fresh Foods Online Based on Web Crawling 🍏🛒