Oluwatobi Adedamola Ayilara-Adewale | Artificial Intelligence | Editorial Board Member

Dr. Oluwatobi Adedamola Ayilara-Adewale | Artificial Intelligence | Editorial Board Member

Lecturer | Osun State University | Nigeria

Dr. Oluwatobi Adedamola Ayilara-Adewale is a computer science researcher specializing in machine learning, AI-driven cybersecurity and intelligent systems, serving as an academic and research contributor in these domains. With advanced degrees in computer science and a strong foundation in computational methods and digital systems, he has gained professional experience through participation in national and international research projects involving digital resilience, smart agriculture, climate-focused data analytics and secure digital infrastructures, often providing technical leadership in multidisciplinary teams. His research focuses on artificial intelligence, IoT security, intrusion detection, blockchain security, predictive analytics and cyber-resilient architectures, supported by numerous peer-reviewed publications spanning journals, conference outputs and book chapters. He has contributed to the development of machine learning models for security, intelligent decision-support systems and emerging frameworks for digital trust. Dr. Ayilara-Adewale has received recognition for innovative research and holds professional certifications in cloud computing, cybersecurity and penetration testing. He is an active member of multiple professional bodies, reflecting his commitment to advancing knowledge in computing and cybersecurity, and he has engaged in collaborative initiatives that strengthen the ecosystem of applied AI research. His growing scholarly profile, technical versatility and dedication to secure and intelligent systems position him as a valuable contributor to contemporary research and a strong candidate for excellence awards.

Profiles: Google Scholar

Featured Publications

1. Jimoh, K., Ajayi, A., & Ayilara, O. (2014). Intelligent model for manual sorting of plastic wastes. International Journal of Computer Applications, 101(7), 20–26.

2. Jimoh, K. O., Adepoju, T. M., Sobowale, A. A., & Ayilara, O. A. (2018). Offline gesture recognition system for Yorùbá numeral counting. Asian Journal of Research in Computer Science, 1(4), 1–11.

3. Ajayi, A. O., Jimoh, K. A., & Ayilara, O. A. (2016). Evaluation of plastic waste classification systems. British Journal of Mathematics & Computer Science, 16(3), 1–11.

4. Ayilara, M. S., Fasusi, S. A., Ajakwe, S. O., Akinola, S. A., Ayilara-Adewale, O. A., … (2025). Impact of climate change on agricultural ecosystem. In Climate change, food security, and land management: Strategies for a sustainable future.

5. Olanrewaju, A., & Ayilara, O. A. (2024). The effect of data compromises on internet users: A review on financial implication of the elderly in the United States. African Journal of Social Sciences and Humanities Research, 1, 28–37.

Dr. Oluwatobi Adedamola Ayilara-Adewale’s work advances secure and intelligent digital ecosystems by integrating artificial intelligence with resilient cybersecurity frameworks. His research contributes to safer technologies, sustainable data-driven solutions and innovative systems that support societal development, industry transformation and global digital trust.

Huxiong Li | Artificial Intelligence | Artificial Intelligence

Prof. Dr. Huxiong Li | Artificial Intelligence | Artificial Intelligence

Professor | Shaoxing University | China

Prof. Dr. Huxiong Li is a leading researcher in artificial intelligence, specializing in 3D vision, intelligent perception, urban digital twins, and complex network control. He has made significant contributions through innovative research, demonstrated by his extensive publications, patents, and leadership of multiple national and international projects. His work bridges AI technologies with practical applications in cultural heritage preservation and smart city infrastructure, reflecting a strong interdisciplinary approach. Over the years, he has fostered collaborations with global institutions, enhancing the reach and impact of his research. Prof. Li’s guidance of numerous projects has not only advanced scientific understanding but also facilitated industrial implementation of AI technologies. His research demonstrates consistent excellence, originality, and societal relevance, positioning him as a prominent figure in geospatial artificial intelligence. According to Scopus, his measurable research impact includes 28 citations, 9 documents, and an h-index of 402.

Profiles: Scopus | ORCID

Featured Publications

1. Reducing the clustering challenge in the IoT using two disjoint convex hulls. Scientific Reports, 2025.

2. Integrating InSAR coherence and air pollution detection satellites to study the impact of war on air quality. International Journal of Applied Earth Observation and Geoinformation, 2025.

 

Bushra Naz | Deep learning | Best Researcher Award

Dr. Bushra Naz | Deep learning | Best Researcher Award

Associate professor at Mehran University of Engineering and Technology| Pakistan

Dr. Bushra Naz is an accomplished academic and researcher with expertise in artificial intelligence, deep learning, image processing, hyperspectral image classification, and pattern recognition. Serving as an Associate Professor and PhD supervisor, she has made significant contributions to advancing knowledge through impactful research and dedicated mentorship. Her funded projects include innovative solutions in speech emotion recognition, assistive technologies for visually impaired individuals, water quality monitoring, and sustainable agriculture, reflecting a strong focus on societal benefit. She has published widely, reviewed for leading international journals, and actively participated in global conferences as a session chair and committee member. Her achievements are further recognized through prestigious scholarships, research fellowships, and honors that demonstrate her academic excellence and leadership. With a commitment to bridging theory and practice, Dr. Naz continues to drive interdisciplinary collaborations and inspire future researchers, positioning herself as a leader in advancing AI-driven solutions for real-world challenges.

Professional Profile 

Google Scholar

Education

Dr. Bushra Naz has a strong academic foundation in computer systems and engineering, beginning with a bachelor’s degree in Computer Systems Engineering, followed by a master’s degree in Communication Systems and Networks. She pursued her doctoral studies at Nanjing University of Science and Technology, China, where she completed a PhD in Computer Science and Engineering with a research focus on machine learning and hyperspectral image classification. Her doctoral thesis explored advanced elastic-net representation methods for image classification, demonstrating her early commitment to innovative AI-driven solutions. She also earned international recognition during her doctoral journey, supported by prestigious scholarships and fellowships, which allowed her to gain global exposure and strengthen her research expertise. With a solid academic trajectory rooted in both national and international institutions, Dr. Naz has combined technical depth with interdisciplinary knowledge, equipping her with the skills to pursue cutting-edge research while training the next generation of scholars and professionals.

Experience

Dr. Bushra Naz brings extensive academic and research experience spanning over a decade. She began her professional journey as a laboratory lecturer, progressively advancing to lecturer, assistant professor, and currently serves as an associate professor in the Department of Computer Systems Engineering at Mehran University of Engineering and Technology, Jamshoro. In these roles, she has taught a diverse range of subjects including microprocessors, operating systems, digital image processing, machine learning, deep learning, and artificial intelligence, shaping the technical skills of numerous students. Beyond teaching, she has taken on leadership roles in departmental committees, project supervision, curriculum review, and outcome-based education implementation. Her responsibilities also include supervising undergraduate, master’s, and doctoral research projects, many of which align with pressing technological and societal challenges. Through her experience, she has built a reputation as a dedicated educator, innovative researcher, and academic leader who seamlessly integrates research and teaching to drive meaningful outcomes.

Research Focus

Dr. Bushra Naz’s research focus lies in the application of artificial intelligence and machine learning to solve complex real-world problems. Her expertise covers deep learning, neural networks, hyperspectral imaging, image classification, object detection, and pattern recognition. She has conducted pioneering research in spectral-spatial methods for image classification, advancing techniques in optimization and sparse representation. Her projects span diverse domains, including speech emotion recognition, augmented reality-based navigation for the visually impaired, IoT-driven water quality monitoring, crop sensing for sustainable agriculture, and accident detection systems. This interdisciplinary approach highlights her commitment to applying AI solutions for societal impact, sustainability, and technological innovation. In addition, she actively contributes as a reviewer for high-impact journals and participates in international conferences as a session chair, strengthening global research dialogue. By integrating technical rigor with practical application, Dr. Naz continues to expand the frontiers of AI research while addressing challenges that directly benefit communities and industries.

Award and Honor

Dr. Bushra Naz’s academic excellence and research contributions have been recognized through numerous awards and honors at national and international levels. She received the prestigious China Scholarship Council award for her PhD studies and was further distinguished with the ELITE Scholarship as the Best Foreign Student during her doctoral program. Her excellence in research was acknowledged with honor certificates and rewards for her publications in IEEE journals. Earlier in her career, she earned the Higher Education Commission of Pakistan’s fully funded scholarship for her master’s studies and received merit-based scholarships during her undergraduate years. She also secured the UNESCO/People’s Republic of China Co-Sponsored Fellowship as a senior research scholar, reflecting her growing international recognition. These accolades not only highlight her academic dedication but also underscore her ability to compete successfully at global platforms. Collectively, her awards showcase her talent, perseverance, and impactful contributions to engineering and computer science research.

Publication Top Notes

  • Title: Sustainable Higher Education Reform Quality Assessment Using SWOT Analysis with Integration of AHP and Entropy Models: A Case Study of Morocco
    Year: 2021
    Citations: 64

  • Title: Spatial-Hessian-feature-guided variational model for pan-sharpening
    Year: 2015
    Citations: 50

  • Title: Fast superpixel based subspace low rank learning method for hyperspectral denoising
    Year: 2018
    Citations: 44

  • Title: Bilayer elastic net regression model for supervised spectral-spatial hyperspectral image classification
    Year: 2016
    Citations: 28

  • Title: Hybrid LSTM Self-Attention Mechanism Model for Forecasting the Reform of Scientific Research in Morocco
    Year: 2021
    Citations: 25

  • Title: Onion Crop Monitoring with Multispectral Imagery using Deep Neural Network
    Year: 2021
    Citations: 14

  • Title: A machine learning framework for major depressive disorder (MDD) detection using non-invasive EEG signals
    Year: 2025
    Citations: 13

  • Title: Sustainable higher education reform quality assessment using SWOT Analysis with integration of AHP and Entropy models: A case study of Morocco
    Year: 2021
    Citations: 13

  • Title: Local and nonlocal context-aware elastic net representation-based classification for hyperspectral images
    Year: 2017
    Citations: 8

  • Title: Hyperspectral image classification via Elastic Net Regression and bilateral filtering
    Year: 2015
    Citations: 8

Conclusion

Dr. Bushra Naz has established herself as a distinguished researcher and academic leader with a significant impact in the fields of artificial intelligence, machine learning, and hyperspectral image analysis. Her extensive research portfolio demonstrates a balance of theoretical innovation and practical application, addressing societal challenges such as sustainable agriculture, water quality monitoring, assistive technologies, and mental health detection. With a strong record of high-impact publications, international collaborations, research supervision, and active participation in conferences and editorial roles, she has consistently contributed to advancing knowledge and mentoring future researchers. Her achievements are further reinforced by prestigious awards, fellowships, and funded projects that recognize her scholarly excellence and leadership. Overall, Dr. Naz exemplifies the qualities of a visionary researcher—innovative, dedicated, and socially responsible—making her a highly deserving candidate for recognition through the Best Researcher Award.

merve pınar | Machine Learning | Best Researcher Award

Dr. merve pınar | Machine Learning | Best Researcher Award

Research Ass, Marmara University, Turkey

Merve Pinar is a Research Assistant in the Faculty of Technology, Computer Engineering Department at Marmara University, Turkey. She has been pursuing her doctorate since 2023 at Marmara University in the field of Computer Engineering. Her academic journey includes a postgraduate degree from the Institute for Graduate Studies in Pure and Applied Sciences (2019-2022) and an undergraduate degree from Çanakkale Onsekiz Mart University, where she studied Engineering (2009-2013). Merve’s work primarily focuses on artificial intelligence, machine learning, and their applications in various fields, especially healthcare. She is dedicated to exploring innovative solutions using deep learning and pattern recognition techniques. Her contributions to the academic community include publications in respected journals and conferences. She also actively collaborates with other researchers to advance the field.

Profile 

Education

  • Doctorate (2023-Present): Marmara University, Faculty of Technology, Computer Engineering, Turkey.
  • Postgraduate (2019-2022): Marmara University, Institute for Graduate Studies in Pure and Applied Sciences, Turkey. Dissertation: “Derinöğrenme yöntemleri kullanılarak beyin tümörü tiplerinin ve sınırlarının tahminlenmesi” (Prediction of brain tumor types and boundaries using deep learning methods).
  • Undergraduate (2009-2013): Çanakkale Onsekiz Mart University, Faculty of Engineering, Turkey.

Merve’s academic background provides a solid foundation in computer engineering, artificial intelligence, and data science. She continues to pursue advanced studies, focusing on leveraging machine learning and deep learning methods to address complex problems in health and technology.

Research Focus

Merve Pinar’s research focuses on the intersection of artificial intelligence, machine learning, and medical applications. Her primary interests are database management, data structures, pattern recognition, and deep learning. She specializes in using AI techniques for medical imaging, particularly in the classification and segmentation of brain tumor types using MRI and surgical microscope images. Her work aims to enhance diagnostic tools, improving the accuracy and efficiency of healthcare systems. Additionally, she is involved in hyperparameter optimization for big data applications, which helps improve recommendation systems. Merve’s interdisciplinary research is positioned at the cutting edge of AI, combining computer engineering with real-world applications, particularly in healthcare technology, where deep learning plays a crucial role in revolutionizing diagnostics and treatment strategies.

Publications

  • Deep Learning-Assisted Segmentation and Classification of Brain Tumor Types on Magnetic Resonance and Surgical Microscope Images 🧠💻 (2024)
  • Hyperparameter Optimization for Recommendation Systems with Big Data 📊🔍 (2017)